K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6

Bài 3

A = 1.2.3...n + 2024

Nếu n = 1 thì A = 1 + 2024

A = 2025

A = \(45^2\) (thỏa mãn)

Nếu n = 2 thì A = 1.2 + 2024

A = 2 + 2024

A = 2026

2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4

Nếu n ≥ 3 thì A = 1.2.3..n + 2024

1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2

⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.


28 tháng 2 2021

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

28 tháng 2 2021

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

\(n^2-2n-10\)

\(=n^2-2n+1-11\)

\(=\left(n-1\right)^2-11\)

4 tháng 10 2016

tim n co ma

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

10 tháng 12 2018

ai nhanh tôi k cho

26 tháng 2 2019

Tự túc là hạnh phúc! OK?

30 tháng 1 2022

hello