Tính
815.413
(1/2)18.(1/4)24
912.2710
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta quy về dạng tổng quát xét cho dễ nhé.
\(\dfrac{1}{x\cdot\left(x+2\right)}=\dfrac{1}{2}.\dfrac{2}{x.\left(x+2\right)}=\dfrac{1}{2}.\left(\dfrac{1}{x}-\dfrac{1}{x-2}\right)\)
Từ đó áp dụng dạng tổng quát để rút gọn là ra.
Chúc em học tốt!
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
\(8^{15}\times4^{13}=2^{45}\times2^{26}=2^{71}\)
\(\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{2}\right)^{48}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\times27^{10}=3^{24}\times3^{30}=3^{54}\)
\(8^{15}\cdot4^{13}=\left(4^2\right)^{15}\cdot4^{13}=4^{30}\cdot4^{13}=4^{43}\)
\(\left(\frac{1}{2}\right)^{18}\cdot\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\cdot\left[\left(\frac{1}{2}\right)^2\right]^{24}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\cdot27^{10}=3^{36}\cdot3^{30}=3^{66}\)