giải pt: \(\sqrt{x-2009}+\sqrt{y-2008}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự

Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)
<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)
<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)
...
^_^

Nhân hai vế với 2 :
2*\(\sqrt{x+2}\)*\(\sqrt{y-1}\) + 2*\(\sqrt{z-2}\) = x + y + z
<=>[ x - 2*\(\sqrt{x+1}\)] +[ (y - 1) - 2*\(\sqrt{y-1}\) + 1] + [(z - 2) - 2\(\sqrt{z-2}\) + 1 ] = 0
<=> [\(\sqrt{x-1}^2\) + [\(\sqrt{y-1}-1\)]2 + [\(\sqrt{z-2}-1\))2 = 0
=> x = 1 , y = 2 và z = 3

Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)
PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)
Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:
\(2.\sqrt{x-2}\le x-2+1=x-1\)
\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)
\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)
=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)
Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1
=> x = 3; y = -2008; z = 2011 là nghiệm của PT
Phương trình có vô số nghiệm
Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)