chứng minh rằng : \(8^7-2^{18}\) chia hết cho 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.





a) Ta xét thấy:
21:7 dư 2; 22:7 dư 4; 23 chia 7 dư 1;24:7 dư 2;...
=> cứ 3 lũy thừa thì số dư lặp lại 1 lần
87= 221=> 87 : 7 dư 1
218: 7 dư 1(tương tự như trên)
=> 87 - 218 chia hết cho 7
Mà 2 số đều chia hết cho 2
=> 87- 218 chia hết cho 14
VÂNG "CHỊ" BÁCH QUÁ ĐỈNH. CHỊ ẤY CỨ GIẢI BÀI NÀY ĐÉN BÀI KHÁC

a) Vì abcd chia hết cho 4 nên 10c + d chia hết cho 4
Mặt khác 10c + d = 8c + 2c + d
Vì 8c chia hết cho 4 nên 2c + d cũng chia hết cho 4

ta có 87 -218=(23)7-218
=221-218
=218.(23-1)
=218.7
=217.2.7
=217.14
có thừa số 14 nên chia hết cho 14

ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
\(8^7-2^{18}\\ =\left(2^3\right)^7-2^{18}\\ =2^{21}-2^{18}\\ =2^{17}\cdot\left(2^4-2\right)\\ =2^{17}\cdot14⋮14\)
Vậy \(8^7-2^{18}⋮14\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}.1\)
\(=2^{18}.8-2^{18}.1\)
\(=2^{18}\left(8-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.14⋮14\)
\(\rightarrowđpcm\)