Số giá trị nguên của n để biểu thức B = 6n + 5 / 2n - 1 có giá trị là 1 số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


De \(\frac{6n+5}{2n-1}\)\(\in Z\)
=> 6n+5 chia het cho 2n-1
=> 6n-3+8 chia het cho 2n-1
=> 3(2n-1)+8 chia het cho 2n-1
=> 8 chia het cho 2n-1
=> 2n-1=-1;1;-2;2;-4;4;-8;8
Vi 2n-1 la so le
=> 2n-1=-1;1
=> 2n=0;2
=> n=0;1

Để A là số nguyên thì 3n+9⋮n-4
=>3n-12+21⋮n-4
=>21⋮n-4
=>n-4∈{1;-1;3;-3;7;-7;21;-21}
=>n∈{5;3;7;1;11;-3;25;-17}
Khi n=5 thì \(A=\frac{3\cdot5+9}{5-4}=\frac{15+9}{1}=24\)
Khi n=3 thì \(A=\frac{3\cdot3+9}{3-4}=\frac{9+9}{-1}=-18\)
Khi n=7 thì \(A=\frac{3\cdot7+9}{7-4}=\frac{21+9}{3}=\frac{30}{3}=10\)
Khi n=1 thì \(A=\frac{3\cdot1+9}{1-4}=\frac{12}{-3}=-4\)
Khi n=11 thì \(A=\frac{3\cdot11+9}{11-4}=\frac{33+9}{7}=\frac{42}{7}=6\)
Khi n=-3 thì \(A=\frac{3\cdot\left(-3\right)+9}{-3-4}=0\)
Khi n=25 thì \(A=\frac{3\cdot25+9}{25-4}=\frac{75+9}{21}=\frac{84}{21}=4\)
Khi n=-17 thì \(A=\frac{3\cdot\left(-17\right)+9}{-17-4}=\frac{-51+9}{-21}=\frac{-42}{-21}=2\)
Để B nguyên thì 6n+5⋮2n-1
=>6n-3+8⋮2n-1
=>8⋮2n-1
=>2n-1∈{1;-1}
=>2n∈{2;0}
=>n∈{1;0}
Khi n=1 thì \(B=\frac{6\cdot1+5}{2\cdot1-1}=\frac{11}{1}=11\)
Khi n=0 thì \(B=\frac{6\cdot0+5}{2\cdot0-1}=\frac{5}{-1}=-5\)

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)

a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự