A=9+9^2+9^3+...+9^60
so sánh A với 3^121
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5.9 > 0
b) (-3) . (-47) > 15
c) (-3) .(-2) > (-3)
d) (-9) .(-7) > (9)
\(a,\dfrac{9}{17}+\dfrac{15}{4}=\dfrac{36}{68}+\dfrac{255}{68}=\dfrac{291}{68}\\ b,\dfrac{19}{121}-\dfrac{1}{11}=\dfrac{19}{121}-\dfrac{11}{121}=\dfrac{8}{121}\\ c,\dfrac{4}{15}+3=\dfrac{4}{15}+\dfrac{45}{15}=\dfrac{49}{15}\\ d,3-\dfrac{5}{9}=\dfrac{27}{9}-\dfrac{5}{9}=\dfrac{22}{9}\)
\(a,\dfrac{9}{17}+\dfrac{15}{4}=\dfrac{36}{68}+\dfrac{255}{68}=\dfrac{291}{68}\)
\(b,\dfrac{19}{121}-\dfrac{1}{11}=\dfrac{19}{121}-\dfrac{11}{121}=\dfrac{8}{121}\)
\(c,\dfrac{4}{15}+3=\dfrac{4}{15}+\dfrac{3}{1}=\dfrac{4}{15}+\dfrac{45}{15}=\dfrac{49}{15}\)
\(d,3-\dfrac{5}{9}=\dfrac{3}{1}-\dfrac{5}{9}=\dfrac{27}{9}-\dfrac{5}{9}=\dfrac{22}{9}\)
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}+\frac{1}{121}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{11^2}\)
Ta có: \(\frac{1}{2^2}>\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}>\frac{1}{4}-\frac{1}{5}\)
................................
\(\frac{1}{10^2}>\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}>\frac{1}{11}-\frac{1}{12}\)
Cộng theo vế ta được:
\(A>\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
Vậy \(A>\frac{5}{12}\)
A = \(\frac{9^7+2}{9^7-1}=\frac{99^7-1+3}{9^7-1}=1+\frac{3}{9^7-1}\)
B =\(\frac{9^7}{9^7-3}=\frac{9^7-3+3}{9^7-3}=1+\frac{3}{9^7-3}\)
Vì \(\frac{3}{9^7-1}<\frac{3}{9^7-3}\)=> A < B
A=\(\frac{9^{61}-9}{8}\)=3^122-3^2/8
vi3^122-3^2/8 <3^121 nên A<3^121