K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

30 tháng 3 2017

13 + 23 + 33 = 1 + 8 + 27 = 36.

Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP

29 tháng 1 2018

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.

Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.

Vậy mỗi tổng đã cho đều là số chính phương.

14 tháng 11 2017

4 tháng 9 2017

a,  3 2 + 4 2 = 25 = 5 2  là số chính phương.

b,  13 2 - 5 2 = 144 = 12 2 là số chính phương.

c,  1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2  là số chính phương.

29 tháng 9 2019

Đặt vế trái bằng A n

Dễ thấy với n = 1 hệ thức đúng.

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

9 tháng 12 2019

(SCP là viết tắt của số chính phương)

Ta có: 13 = 1; 23 = 8; 33 = 27; 43 = 64.

● 13 + 23 = 1 + 8 = 9.

Mà 9 = 32 là SCP (vì là bình phương của 3) nên 13 + 23 là SCP.

18 tháng 9 2018

x + 1 3 + x + 2 3 + x + 3 3 = 0 ⇔ x + 1 3 + x + 2 3 = − x + 3 3 ⇔ x + 1 3 + x + 2 3 3 = − x + 3 3 3 ⇔   x + 1 + x + 2 + 3 ( x + 1 ) ( x + 2 ) 3 x + 1 3 + x + 2 3 = − x − 3

⇔ 3 ( x + 1 ) ( x + 2 ) 3 . ( − x + 3 3 − 3 x − 6

⇔ ( x + 1 ) ( x + 2 ) ( x + 3 ) 3 = x + 2

⇔ ( x + 1 ) ( x + 2 ) ( x + 3 ) = ( x + 2 ) 3

⇔ ( x + 2 ) ( x 2 + 4 x + 3 − x 2 − 4 x − 4 ) = 0

⇔ x + 2 = 0 ⇔ x = − 2

Thay x = - 2 lại phương trình ta thấy thỏa mãn

Vậy phương trình có nghiệm duy nhất  x = - 2

Đáp án cần chọn là: D