Bài 1 : Cho tam giác ABC, A(1;3) B(0;1) H ( 8/5 ; 9/5 ). Tìm tọa độ tâm đường trong ngoại tiếp tam giác ABC
Bài 2 : Cho hình vuông ABCD A(1;2) C(3;5). Xác định tọa độ các đỉnh còn lại của hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Xét ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>a+b+c=180
Ta có: \(\hat{C}-3\cdot\hat{B}-2\cdot\hat{A}=-3^0\)
=>c-3b-2a=-3
=>2a+3b-c=3
mà a+b+c=180
nên 2a+3b-c+a+b+c=3+180
=>3a+4b=183
=>6a+8b=366
\(5\cdot\hat{B}-2\cdot\hat{A}=16^0\)
=>5b-2a=16
=>15b-6a=48
=>15b-6a+6a+8b=366+48
=>23b=414
=>\(b=\frac{414}{23}=18^0\)
=>\(\hat{B}=18^0\)
3a+4b=183
=>3a=183-4b=183-72=111
=>\(a=\frac{111}{3}=37^0\)
=>\(\hat{A}=37^0\)
\(\hat{C}=180^0-18^0-37^0=180^0-55^0=125^0\)
Bài 2:
Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Xét ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>a+b+c=180
\(\hat{A}+\hat{B}-2\cdot\hat{C}=27^0\)
=>a+b-2c=27
=>(a+b+c)-(a+b-2c)=180-27
=>3c=153
=>\(c=\frac{153}{3}=51\)
=>\(\hat{C}=51^0\)
\(\hat{A}+3\cdot\hat{C}=273^0\)
=>\(\hat{A}=273^0-3\cdot51^0=273^0-153^0=120^0\)
\(\hat{B}=180^0-51^0-120^0=60^0-51^0=9^0\)
bài 1:
Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Xét ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>a+b+c=180
\(\hat{A}-\hat{B}+\hat{C}=90^0\)
=>a-b+c=90
=>a+b+c-(a-b+c)=180-90
=>2b=90
=>b=45
=>\(\hat{B}=45^0\)
=>\(\hat{A}+\hat{C}=180^0-45^0=135^0\)
mà \(\hat{A}-\hat{C}=-5^0\)
nên \(\hat{A}=\frac{135^0-5^0}{2}=\frac{130^0}{2}=65^0\)
=>\(\hat{C}=135^0-65^0=70^0\)

1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm

b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
Bài 1: H là điểm nào?
Bài 2:
A(1;2) B C(3;5) D
Gọi I là tâm hình vuông ABCD
Ta có: I là trung điểm của AC
\(\Rightarrow\begin{cases}x_I=\frac{x_A+x_C}{2}=\frac{4}{2}=2\\y_I=\frac{y_A+y_C}{2}=\frac{2+5}{2}=\frac{7}{2}\end{cases}\)
\(\Rightarrow I\left(2;\frac{7}{2}\right)\)
Gọi: \(B=\left(x;y\right)\)
\(\overrightarrow{AB}=\left(x-1;y-2\right)\)
\(\overrightarrow{IB}=\left(x-2;y-\frac{7}{2}\right)\)
\(\overrightarrow{CB}=\left(x-3;y-5\right)\)
\(\overrightarrow{AC}=\left(2;3\right)\)
Ta có: \(\begin{cases}AB\text{_|_}CB\\IB\text{_|_}AC\end{cases}\Leftrightarrow\begin{cases}\overrightarrow{AB}.\overrightarrow{CB}=0\\\overrightarrow{IB}.\overrightarrow{AC}=0\end{cases}\Leftrightarrow\begin{cases}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y-5\right)=0\\2\left(x-2\right)+3\left(y-\frac{7}{2}\right)=0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left(\frac{25}{4}-\frac{3}{2}y\right)\left(\frac{17}{4}-\frac{3}{2}y\right)+\left(y-2\right)\left(y-5\right)=0\left(1\right)\\x=\frac{29}{4}-\frac{3}{2}y\left(2\right)\end{cases}\)
\(\left(1\right)\Leftrightarrow\frac{13}{4}y^2-\frac{91}{4}y+\frac{585}{16}=0\)
\(\Leftrightarrow\) TH1: \(y=\frac{9}{2}\Rightarrow x=\frac{1}{2}\)
TH2: \(y=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
Vậy toạ độ hai đỉnh còn lại là \(\left(\frac{1}{2};\frac{9}{2}\right)\) và \(\left(\frac{7}{2};\frac{5}{2}\right)\)
Vì máy mình đánh ngoặc vuông không được nên ghi thành TH1;TH2. Chứ bạn dụng dấu ngoặc vuông cho đỡ nhé.