cho đa thức f(x) có bậc 3 với các hệ số nguyên và hệ số cao nhất là 1 thỏa mãn f(1999) = 2000; f(2000) = 2001. Chứng minh rằng f(x) không thể có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt g(x)= p(x)- x^2 -2
Thay x =1 vào biểu thức trên ta có
g(1)= p(1)-3
Mà p(1)=3 => g(1)=0
thay x=3 vào biểu thức trên ta có
g(3)= p(3)- 3^2 -2
g(3)= 0
thay x=5 vào biểu thức trên ta có:
g(5)=0
=> x=1;x=3;x=5 là các nghiệm của g(x)
=> g(x)= (x-1)(x-3)(x-5)(x+a)
Mà p(x) = g(x)+x^2+2
=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2
=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2
=>p(-2)= 216-105a
7p(6)=896+105a
=> 7p(6)+ p(-2)= 1112

- Đặt dạng đa thức
Giả sử
\(f \left(\right. x \left.\right) = a x^{3} + b x^{2} + c x + d , a \in \mathbb{Z}^{+} , \textrm{ } b , c , d \in \mathbb{R} .\)
- Dùng điều kiện đề bài
Ta có:
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = \left(\right. 2001 - 2000 \left.\right) = 1.\)
Nhưng
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = a \left(\right. 2000^{3} - 1999^{3} \left.\right) + b \left(\right. 2000^{2} - 1999^{2} \left.\right) + c \left(\right. 2000 - 1999 \left.\right) .\)
- \(2000^{3} - 1999^{3} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)
\(= 1 \cdot \left(\right. 2000^{2} + 2000 \cdot 1999 + 1999^{2} \left.\right) .\)
Tính:
\(2000^{2} = 4,000,000 , 2000 \cdot 1999 = 3,998,000 , 1999^{2} = 3,996,001.\)
Tổng = \(11,994,001\).
\(\Rightarrow 2000^{3} - 1999^{3} = 11,994,001.\)
- \(2000^{2} - 1999^{2} = \left(\right. 2000 - 1999 \left.\right) \left(\right. 2000 + 1999 \left.\right) = 1 \cdot 3999 = 3999.\)
- \(2000 - 1999 = 1.\)
Vậy:
\(f \left(\right. 2000 \left.\right) - f \left(\right. 1999 \left.\right) = 11,994,001 a + 3999 b + c = 1. \left(\right. 1 \left.\right)\)
- Tính hiệu cần chứng minh
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = ?\)
Tính từng phần:
\(2001^{3} - 1998^{3} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\) \(= 3 \cdot \left(\right. 2001^{2} + 2001 \cdot 1998 + 1998^{2} \left.\right) .\)
- \(2001^{2} = 4,004,001 ,\)
- \(2001 \cdot 1998 = 3,996, - k i ể m t r a\)
\(2001 \cdot 1998 = 2001 \cdot \left(\right. 2000 - 2 \left.\right) = 2001 \cdot 2000 - 4002 = 4,002,000 - 4002 = 3,997,998.\)
- \(1998^{2} = \left(\right. 2000 - 2 \left.\right)^{2} = 4,000,000 - 8000 + 4 = 3,992,004.\)
Cộng: \(4,004,001 + 3,997,998 + 3,992,004 = 11,994,003.\)
Vậy:
\(2001^{3} - 1998^{3} = 3 \cdot 11,994,003 = 35,982,009.\)
Tương tự:
\(2001^{2} - 1998^{2} = \left(\right. 2001 - 1998 \left.\right) \left(\right. 2001 + 1998 \left.\right) = 3 \cdot 3999 = 11,997.\) \(2001 - 1998 = 3.\)
Vậy:
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 c . \left(\right. 2 \left.\right)\)
- Dùng (1) để thay \(c\)
Từ (1): \(c = 1 - 11,994,001 a - 3999 b .\)
Thay vào (2):
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 35,982,009 a + 11,997 b + 3 \left(\right. 1 - 11,994,001 a - 3999 b \left.\right) .\) \(= 35,982,009 a + 11,997 b + 3 - 35,982,003 a - 11,997 b .\)
Rút gọn:
\(= 6 a + 3.\)
- Kết luận
Do \(a\) là số nguyên dương nên
\(f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right) = 6 a + 3 = 3 \left(\right. 2 a + 1 \left.\right) .\)
Rõ ràng chia hết cho 3 và lớn hơn 3.
\(\Rightarrow f \left(\right. 2001 \left.\right) - f \left(\right. 1998 \left.\right)\) là hợp số.
✅ Kết quả cuối cùng:
\(f\left(\right.2001\left.\right)-f\left(\right.1998\left.\right)\) là hợp số.
xin cái tickkk=)
