cho a;b;c là 3 cạnh của 1 tam giác
cm: ab +bc+ca=<a2+b2+c2 <2(ab+bc+ca)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Máy tớ lag hay cậu bị lỗi Unikey nhỉ ?? Tớ k hiểu cậu đang viết cái j :))
Ta có: \(x^2+x-6=\left(x-2\right)\left(x+3\right)\)
Đặt \(A\left(x\right)=x^3+ax^2-bx+12\)
Để A(x) chia hết cho \(x^2+x-6\) thì mọi nghiệm của \(x^2+x-6\) đều là nghiệm của A(x)
=> x = 2 và x = -3 là 2 nghiệm của A(x)
Ta có: \(\hept{\begin{cases}A\left(2\right)=2^3+4a-2b+12=0\\A\left(-3\right)=\left(-3\right)^3+\left(-3\right)^2a-\left(-3\right)b+12=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4a-2b=-20\\9a+3b=15\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-b=-10\\3a+b=5\end{cases}}\)
\(\Rightarrow2a-b+3a+b=-10+5\)
\(\Leftrightarrow5a=-5\Rightarrow a=-1\Rightarrow b=8\)
Vậy a = -1 ; b = 8
ab+bc+ca \(\le\) a^2+b^2+c^2
<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng
a^2+b^2+c^2 < 2(ab+bc+ca)
<=> a^2+b^2+c^2-2ab-2bc-2ca < 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng
Ta co đpcm
a,b,c > 0
Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca
Cộng theo vế : 2(a2+b2+c2) \(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca
theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2
b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2
Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2