K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

Máy tớ lag hay cậu bị lỗi Unikey nhỉ ?? Tớ k hiểu cậu đang viết cái j :))

13 tháng 2 2020

XL TỚ ĐANG LẤY TỪ GMAIL NÊN HƠI LÁC

18 tháng 1 2016

tick cho tớ tròn 190 điểm điiiiiiiiiiiiiiiiiiiiii mafaaaaaaaaaaaa!

8 tháng 10 2020

Ta có: \(x^2+x-6=\left(x-2\right)\left(x+3\right)\)

Đặt \(A\left(x\right)=x^3+ax^2-bx+12\) 

Để A(x) chia hết cho \(x^2+x-6\) thì mọi nghiệm của \(x^2+x-6\) đều là nghiệm của A(x)

=> x = 2 và x = -3 là 2 nghiệm của A(x)

Ta có: \(\hept{\begin{cases}A\left(2\right)=2^3+4a-2b+12=0\\A\left(-3\right)=\left(-3\right)^3+\left(-3\right)^2a-\left(-3\right)b+12=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-20\\9a+3b=15\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-b=-10\\3a+b=5\end{cases}}\)

\(\Rightarrow2a-b+3a+b=-10+5\)

\(\Leftrightarrow5a=-5\Rightarrow a=-1\Rightarrow b=8\)

Vậy a = -1 ; b = 8