Tìm các số tự nhiên a;b nguyên tố sao cho:
\(\frac{a+7b}{a+5b}=\frac{29}{28}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab*a=1ab
==>a^2 * b =a*b
==>a^2=a*b
==> a=b
vậy a=b \(\forall\)x\(\in\)N
Rút gọn PS cuois 15/9 = 5/3
PS cần tìm có tử là BCNN(7,6) = 42 và mẫu là UCLN(10,5) = 5
=> Đó là PS: 42/5
Kiểm tra lại xem sao: khi nhân được từng Số TN: 12; 7 và 14
bai.................kho..................wa..............troi...................thi....................lanh..................tich................ung..................ho.....................minh..................nha................ret.................wa..................troi............thi.................mua.......................vua..............di...............hoc.....................ve.....................uot................lanh...............wa
\(\frac{a+7b}{a+5b}=\frac{29}{28}\Rightarrow\left(a+7b\right).28=\left(a+5b\right).29\)
\(\Leftrightarrow28a+196b=29a+145b\)
\(\Leftrightarrow29a-28a=196b-145b\)
\(\Leftrightarrow a=51b\)
Do đó a luôn chia hết cho 51 nên a không thể là số nguyên tố.
Vậy không tìm được số a;b thỏa mãn đề bài.