Cho đường tròn (O;R) đường kính AB.
\(M\in OA;N\in OB\)sao cho \(OM=ON\)qua M;N kẻ CD và EF song song với nhau(E;F cùng \(\in\)nửa đường tròn đường kính AB). CM tứ giác CDFE là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
Băng Băng 2k6Vũ Minh TuấnNguyễn Việt LâmHISINOMA KINIMADONguyễn Lê Phước ThịnhNguyễn Thị Ngọc ThơNguyễn Thanh HiềnQuân Tạ Minhtth
cho tam giac abc ngoai tiep duong tron tam O va noi tiep duong tron tam O' ke duong thang AO cat O' tai D. Cm:CD=BD=OD
GỌI H,K là chân đường vuông góc kẻ từ O xuống CD và EF.Sau đó chứng minh 3 điểm O,H,Kthẳng hàng.Xét 2 tam giác vuông MOH và NOK bằng nhau.=>CD=EF.=>CDEF là hình bình hành.(1)
Mặt khác ta có OH vuông góc với CD =>CH=MD=1/2CD
OK " " " EF=>KE=KF =1/2EF
=>HK là đường trung bình của hình bình hành CDEF.
=>HK//CE//DF MÀ HK vuông góc với EF =>CE vuông góc với EF.
=>GÓC CEF=90(2)
Từ (1),(2)=>CDEF là hình chữ nhật