\(A=-2y^2x+x+y+1\) và \(B=x^2+2y^2+xy\)
Tìm cặp số nguyên (x; y) thỏa mãn A=B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 3x + xy - y = 2
=> x(3 + y) - y = 2
=> x(3 + y) - (3 + y) = 5
=> (x - 1)(3 + y) = 5 = 1 . 5 = 5 . 1= -1 . (-5) = (-5) . (-1)
Lập bảng :
x - 1 | 1 | 5 | -1 | -5 |
3 + y | 5 | 1 | -5 | -1 |
x | 2 | 6 | 0 | -4 |
y | 2 | -2 | -8 | -4 |
Vậy ...

\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...

\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)

\(a)\)\(xy-x-y=1\)
\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)
\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)
Lập bảng :
\(x-1\) | \(1\) | \(2\) | \(-1\) | \(-2\) |
\(y-1\) | \(2\) | \(1\) | \(-2\) | \(-1\) |
\(x\) | \(2\) | \(3\) | \(0\) | \(-1\) |
\(y\) | \(3\) | \(2\) | \(-1\) | \(0\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~
\(b)\)\(xy-2x-2y=1\)
\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)
\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)
Lập bảng :
\(x-2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(7\) | \(1\) | \(-3\) |
\(y\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)
Chúc bạn học tốt ~

a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

a) ( x - 1 ) . ( y + 2 ) = 7
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
y+2 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 5 | -1 | -8 | -3 |
b) x . ( y - 3 ) = -12
Lập bảng ta có :
y-3 | 12 | -12 | 2 | -2 | -3 | -4 |
x | -1 | 1 | -6 | 6 | 4 | 3 |
y | 15 | -9 | 5 | 1 | 0 | -1 |
c) xy - 3x - y = 0
x . ( y - 3 ) - y = 0
x . ( y - 3 ) - y + 3 = 3
x . ( y - 3 ) - ( y - 3 ) = 3
( x - 1 ) . ( y - 3 ) = 3
Lập bảng ta có :
x-1 | 3 | 1 | -1 | -3 |
y-3 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 4 | 6 | 0 | 2 |
d) xy + 2x + 2y = -16
x . ( y + 2 ) + 2y = -16
x . ( y + 2 ) + 2y + 4 = -12
x . ( y + 2 ) + 2 . ( y + 2 ) = -12
( x + 2 ) . ( y + 2 ) = -12
Lập bảng ta có :
x+2 | 1 | -1 | -2 | -6 | -4 | -3 |
y+2 | -12 | 12 | 6 | 2 | 3 | 4 |
x | -1 | -3 | -4 | -8 | -6 | -5 |
y | -14 | 10 | 4 | 0 | 1 | 2 |
Ta có : (x - 1).(y + 2) = 7
=> (x - 1) và y + 2 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
x - 1 | -7 | -1 | 1 | 7 |
y + 2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | -3 | -9 | 5 | -1 |
Vậy có 4 cặp x;y thoả mãn : (-6,-3) ; (0 , -9) ; (2 , 5) ; (8, -1)


Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit