Cho a, b, c, d là các số thực thỏa mãn và các mệnh đề sau:
(I)
(II)
(III)
(IV)
(V)
(VI)
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a< b <c thì ( − ∞ ; b ] ∩ ( a ; c ) = ( a ; b ]
Do đó phương án A sai.
Đáp án A
Câu trắc nghiệm này kinh thật :D
\(P=\left(1+36abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+36\left(ab+bc+ca\right)\)
\(P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+36\left(ab+bc+ca\right)\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{\left(2a+2b+2c\right)^2}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge2\sqrt{\dfrac{144\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)
Vậy \(P\ge21\)
Bài 2:
a/ a \(\in\)N \(\Rightarrow\)a > 0 (S). Sửa: a \(\in\)N \(\Rightarrow\)a \(\ge\)0.
b/ a \(\in\)Z và a \(\notin\)N \(\Rightarrow\)a < 0 (Đ).
c/ a \(\in\)N và b < a \(\Rightarrow\)b \(\le\)0 (S). Sửa: a \(\in\)N và b < a \(\Rightarrow\)b \(\le\)0 hoặc b \(\ge\)0.
d/ a \(\in\)N và b \(\le\)0 => a > b (Đ).
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\)
Các mệnh đề đúng là (I), (III), (IV), (VI).
Đáp án B