Cho a ; b ; c > 0 ; ab + bc + ac = 1
Tìm max : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a ; b ; c > 0 ; ab + bc + ac = 1
Tìm max : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}\)
Máy tớ lag hay cậu bị lỗi Unikey nhỉ ?? Tớ k hiểu cậu đang viết cái j :))
Ta có: \(x^2+x-6=\left(x-2\right)\left(x+3\right)\)
Đặt \(A\left(x\right)=x^3+ax^2-bx+12\)
Để A(x) chia hết cho \(x^2+x-6\) thì mọi nghiệm của \(x^2+x-6\) đều là nghiệm của A(x)
=> x = 2 và x = -3 là 2 nghiệm của A(x)
Ta có: \(\hept{\begin{cases}A\left(2\right)=2^3+4a-2b+12=0\\A\left(-3\right)=\left(-3\right)^3+\left(-3\right)^2a-\left(-3\right)b+12=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4a-2b=-20\\9a+3b=15\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-b=-10\\3a+b=5\end{cases}}\)
\(\Rightarrow2a-b+3a+b=-10+5\)
\(\Leftrightarrow5a=-5\Rightarrow a=-1\Rightarrow b=8\)
Vậy a = -1 ; b = 8
ĐK : a;b;c > 0
Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)
Khi đó : \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\) \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)
\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\)
Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
AD BĐT Cauchy ta được : \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\) ( theo BCS )
Suy ra : \(A\le\dfrac{1}{4}\)