K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 giờ trước (22:25)

Còn phải hỏi bằng 2 ❗❗❗

23 giờ trước (22:26)

2:))

10 tháng 9 2016

\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x+1\right|+\left|x-1\right|=\left|x+1\right|+\left|1-x\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|x+1+1-x\right|=2\)

Vậy GTNN của A là 2 khi \(-1\le x\le1\)

11 tháng 9 2016

Ta có 

\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(\Rightarrow A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(\Rightarrow A=\left|x+1\right|+\left|x-1\right|\)

\(\Rightarrow A=\left|x+1\right|+\left|1-x\right|\)

Vì \(\begin{cases}\left|x+1\right|\ge x+1\\\left|1-x\right|\ge1-x\end{cases}\)\(\Rightarrow\left|x+1\right|+\left|1-x\right|\ge x+1+1-x\)

\(\Rightarrow\left|x+1\right|+\left|1-x\right|\ge2\)

Dấu " = " xảy ra khi \(\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-1\\x\le1\end{cases}\)

Vậy MINA=2 khi \(-1\le x\le1\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

13 tháng 9 2017

\(\frac{-3}{\sqrt{x}+1}=\frac{-3}{\sqrt{4}+1}=\frac{-3}{2+1}=\frac{-3}{3}=-1\)

13 tháng 9 2017

-1

chắc chắn 100%

2 tháng 1 2016

cô-si là ra nhé GTNN =65 khi x=7

2 tháng 1 2016

\(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5\)

3 tháng 10 2018

R= - (x - 4\(\sqrt{x-1}\) - 12) = -(x - 1 - 4\(\sqrt{x-1}\)+ 4 - 15) = - (\(\sqrt{x-1}\)- 2 ) + 15 \(\le\)15

Vậy GTLN của R là 15 khi x = 5

10 tháng 10 2021
Học tốt:))

Bài tập Tất cả

10 tháng 10 2021

\(M=\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0\right)\)

Khi \(M=\sqrt{x}-2\)

\(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}=x+\sqrt{x}-2\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}=x-\sqrt{x}-2\)

\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=3\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=\left(\pm\sqrt{3}\right)^2\)

\(\Leftrightarrow\sqrt{x}-1=\pm\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}=\pm\sqrt{3}+1\)

\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(-\sqrt{3}+1\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\1-2\sqrt{3}+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\\x=4-2\sqrt{3}\end{cases}}\)

Vậy \(x\in\left\{4\pm2\sqrt{3}\right\}\)khi \(M=\sqrt{x}-2\)

7 tháng 1 2022

??? đề lỗi à

31 tháng 7 2016

\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

   \(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

 -Nêú \(x\ge1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)\(\sqrt{\left(x-1\right)^2}=x-1\)

Ta có:\(A=x+1+x-1=2x\ge2\)

Dấu "=" xảy ra khi x=1

-Nếu\(1>x\ge-1\)thì \(\sqrt{\left(x+1\right)^2}=x+1\)\(\sqrt{\left(x-1\right)^2}=1-x\)

Ta có:\(A=x+1+1-x=2\)

-Nếu x<-1 thì \(\sqrt{\left(x+1\right)^2}=-x-1\)\(\sqrt{\left(x-1\right)^2}=1-x\)

Ta có:\(A=-x-1+1-x=-2x\ge2\)

Dấu "=" xảy ra khi x=-1

Vậy GTNN của A là 2 tại x=1 hoặc x=-1