\(\frac{x\sqrt2}{2\sqrt{x}+x\sqrt{x}}+\frac{\sqrt2-2}{x-2}\)

gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)

\(=\sqrt{4-2\cdot2\cdot\sqrt2+2}+\sqrt{18-2\cdot3\sqrt2\cdot2+4}\)

\(=\sqrt{\left(2-\sqrt2\right)^2}+\sqrt{\left(3\sqrt2-2\right)^2}\)

\(=2-\sqrt2+3\sqrt2-2=2\sqrt2\)

b: \(\sqrt{\left(\sqrt3-\sqrt2\right)^2}+\sqrt2=\sqrt3-\sqrt2+\sqrt2=\sqrt3\)

c: \(3\sqrt5-\sqrt{\left(1-\sqrt5\right)^2}\)

\(=3\sqrt5-\left|1-\sqrt5\right|\)

\(=3\sqrt5-\left(\sqrt5-1\right)=2\sqrt5+1\)

d:Sửa đề: \(\sqrt{17-12\sqrt2}+\sqrt{6+4\sqrt2}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt2+8}+\sqrt{4+2\cdot2\cdot\sqrt2+2}\)

\(=\sqrt{\left(3-2\sqrt2\right)^2}+\sqrt{\left(2+\sqrt2\right)^2}=3-2\sqrt2+2+\sqrt2=5-\sqrt2\)

10 tháng 7 2020

Sửa đề :

a) \(A=\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-5}{x-\sqrt{x}-2}\right)\)

\(\Leftrightarrow A=\frac{x-\sqrt{x}+4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-4-x+\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}\)

b) \(A=4\)

\(\Leftrightarrow\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}=4\)

\(\Leftrightarrow x+3\sqrt{x}+4=4\sqrt{x}+4\)

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(A=4\Leftrightarrow x\in\left\{0;1\right\}\)

13 tháng 9 2020

Tìm miền xác định phải không 

a) 

\(1-\sqrt{2x-x^2}\) 

a xác định \(\Leftrightarrow2x-x^2\ge0\) 

\(0\le x\le2\) 

b) 

\(\sqrt{-4x^2+4x-1}\) 

b xác định 

\(\Leftrightarrow-4x^2+4x-1\ge0\) 

\(-\left(4x^2-4x+1\right)\ge0\) 

\(4x^2-4x+1\le0\) 

\(\left(2x-1\right)^2\le0\) 

2x - 1 = 0 

x = 1/2 

c) 

\(\frac{x}{\sqrt{5x^2-3}}\) 

c xác định 

\(\Leftrightarrow5x^2-3>0\) 

\(5x^2>3\) 

\(x^2>\frac{3}{5}\) 

\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\) 

d) 

d xác định 

\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\) 

\(x-\sqrt{2x-1}>0\) 

\(x>\sqrt{2x-1}\) 

\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\) 

e) 

e xác định 

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\) 

\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) ) 

\(x< -\frac{2}{3}\) 

f) 

f xác định 

\(\Leftrightarrow x^2+x-2>0\) 

\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

7 tháng 9 2020

+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)    \(\left(ĐK:x\ge0\right)\)

        \(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)

        \(\Leftrightarrow3\sqrt{3x}=6\)

        \(\Leftrightarrow\sqrt{3x}=2\)

        \(\Leftrightarrow3x=4\)

        \(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)

Vậy \(S=\left\{\frac{4}{3}\right\}\)

+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\)    \(\left(ĐK:x\ge1\right)\)

        \(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

        \(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)

        \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)

 Vậy \(S=\left\{1,15\right\}\)

+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\)       \(\left(ĐK:x\ge0\right)\)

         \(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

         \(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

   Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)

    \(\Rightarrow\)\(\sqrt{x}-4< 0\)

   \(\Leftrightarrow\)\(\sqrt{x}< 4\)

   \(\Leftrightarrow\)\(x< 16\)

   Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)

 Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)

7 tháng 9 2020

\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)  (Đk: x \(\ge\)0)

<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)

<=> \(3\sqrt{3x}=6\)

<=> \(\sqrt{3x}=2\)

<=> \(3x=4\)

<=> \(x=\frac{4}{3}\)

\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)

<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\) 

<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)

\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)

<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

<=>  \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)

<=> \(\sqrt{x}< 4\) <=> \(x< 16\)

Kết hợp với đk => S = {x|0 < x < 16}

27 tháng 9 2020

ĐK: \(x\ge0;x\ne1\)

Ta có: \(P=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\text{]}\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{x+\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\text{]}\frac{\left(x-1\right)^2}{2}\)

\(=\left(\sqrt{x}-2-\frac{x+\sqrt{x}-2}{\sqrt{x}+1}\right)\frac{x-1}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}\)

\(-2\sqrt{x}.\frac{\sqrt{x}-1}{2}\)\(=\sqrt{x}-x\)