
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) 3y +xy+2x+6=0
3.(y + 2) + x.(y + 2) = 0
(3 + x).(y + 2) = 0
\(\Rightarrow\hept{\begin{cases}3+x=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-2\end{cases}}}\)
Vậy...

a. \(xy+x-y=9\)
\(\Leftrightarrow xy+x-y-1=9-1\)
\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=8\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=8\)
Ta có bảng:
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
y + 1 | 8 | -8 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
y | 7 | -9 | 3 | -5 | 1 | -3 | 0 | -2 |
Vậy các cặp (x;y) là (2;7) ; (0;-9) ; (3;3) ; (-1;-5) ; (5;1) ; (-3;-3) ; (9;0) ; (-7;-2)
b) xy+2x-3y+5=0
\(\Leftrightarrow xy+2x-3y-6+6+5=0\)
\(\Leftrightarrow x\left(y+2\right)-3\left(y+2\right)+11=0\)
\(\Leftrightarrow\left(x-3\right)\left(y+2\right)=-11\)
Mà -11=-1*11=11*-1=-11*1=1*-11
Do đó ta lập bảng
x-3= | y+2= | x= | y= |
-1 | 11 | 2 | 9 |
11 | -1 | 14 | -3 |
-11 | 1 | -8 | -1 |
1 | -11 | 4 | -13 |
Vậy các cặp (x,y) là: (2,9);(14,-3);(-8,-1);(4,-13)

a) \(xy+2x+y+11=0\)
\(\Leftrightarrow x\left(y+2\right)+\left(y+2\right)+9=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=0-9\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=-9\)\(=-1.9=-3.3=-9.1\)
\(\Rightarrow\left[{}\begin{matrix}x+1=-1;y+2=9\\x+1=-3;y+2=3\\x+1=-9;y+2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2;y=7\\x=-4;y=1\\x=-10;y=-1\end{matrix}\right.\)
Vậy:.............

xy-2x+y+1=0
=>x(y-2)+y-2+3=0
=>(x+1)(y-2)=-3
=>(x+1;y-2)∈{(1;-3);(-3;1);(-1;3);(3;-1)}
=>(x;y)∈{(0;-1);(-4;3);(-2;5);(2;1)}
Ta thử biến đổi:
\(x y - 2 x + y + 1 = 0\)
Nhóm hạng tử theo \(x\):
\(x \left(\right. y - 2 \left.\right) + \left(\right. y + 1 \left.\right) = 0\)
Suy ra:
\(x \left(\right. y - 2 \left.\right) = - \left(\right. y + 1 \left.\right)\) \(x = \frac{- \left(\right. y + 1 \left.\right)}{y - 2} , y \neq 2\)
Vậy nghiệm tổng quát của phương trình là:
\(\left(\right. x , y \left.\right) = \left(\right. \frac{- \left(\right. y + 1 \left.\right)}{y - 2} , \textrm{ }\textrm{ } y \left.\right) , y \neq 2\)