
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vì x2 ≥ 0 ∀ x
=> -5x2 ≤ 0
=> -5x2 + 9 ≤ 9
Để A = -5x2 + 9 nhận giá trị lớn nhất thì -5x2 + 9 = 9
=> A = 9
Vì ( 3x - 2 )2 ≥ 0
=> 5 - ( 3x - 2 )2 ≤ 5
Để B = 5 - ( 3x - 2 )2 nhận giá trị lớn nhất thì 5 - ( 3x - 2 )2 = 5
=> B = 5
Để D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}\)nhận giá trị lớn nhất thì ( 2 - x )2 + 1 nhận giá trị nhỏ nhất
Mà ( 2 - x )2 + 1 ≠ 0
=> ( 2 - x )2 + 1 = 1
=> D = \(\frac{\text{2022}}{\left(\text{2 - x}\right)^2+\text{1}}=\frac{\text{2022}}{\text{1}}\)= 2022
Ta có \(-5x^2\le0\Leftrightarrow-5x^2+9\le9\)
=> Max A = 9
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy Max A = 9 <=> x = 0
b) Ta có \(-\left(3x-2\right)^2\le0\forall x\Rightarrow5-\left(3x-2\right)^2\le5\)
=> Max B = 5
Dấu "=" xảy ra <=> 3x - 2 = 0 <=> x = 2/3
Vậy Max = 5 <=> x = 2/3
c) Ta có \(2x^2+3\ge3\forall x\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)
=> Max C = 1/3
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy Max C = 1/3 <=> x = 0
d) Ta có \(\left(2-x\right)^2+1\ge1\forall x\Leftrightarrow\frac{2022}{\left(2-x\right)^2+1}\le2022\)
=> Max D = 2022
Dấu "=" xảy ra <=> 2 - x = 0 => x = 2
Vậy Max D = 2022 <=> x = 2

Ta có: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}\ge0\\\left(3y+4\right)^{2022}\ge0\end{cases}}\left(\forall x,y\right)\)
\(\Rightarrow\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\ge0\left(\forall x,y\right)\)
Mà theo đề bài ta có: \(\left(2021x-1\right)^{2020}+\left(3y+4\right)^{2022}\le0\)
Nên từ đó suy ra: \(\hept{\begin{cases}\left(2021x-1\right)^{2020}=0\\\left(3y+4\right)^{2022}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2021x-1=0\\3y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2021}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó \(M=2021\cdot\frac{1}{2021}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(=-\frac{4}{3}-\frac{16}{9}=-\frac{28}{9}\)


Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
2C=____
2C+C=_______
C=_____/3
các bược làm đấy làm đi
'' ''' '' ' ' ' ' ' ' ' ' ' ' '
C=2^0-2^1+2^2-..........+2^2022
2C= 2^1-2^2+2^3-..........-2^2022+2^2023
-
C=2^0-2^1+2^2-2^3+.........+2^2022
C=2^2023-1