K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 giờ trước (19:46)

khê lắm

20 giờ trước (19:46)

Oki

31 tháng 8 2016

Lần sau bạn nhớ ghi đề rõ ràng

Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(\frac{3}{4}\)

             

Lời giải:

                   

 

Vậy những phân số biểu diễn số hữu tỉ   là : 



 

Nguyễn Thế Bảo

ý "B" nữa cơ mà.

Ý a trên loigiaihay.com 

 

14 tháng 8 2016

4. đặt \(\sqrt[3]{x+24}=a\) và \(\sqrt{12-x}=b\)(b>=0)

==>ta có hệ pt 

\(\int_{a^3+b^2=36}^{a+b=6}\)<=> \(\int_{a^3+\left(6-a\right)^2=36}^{b=6-a}\)<=> \(\int_{b=6-a}^{a^3+a^2-12a=0}\)<=> \(\int_{b=6-a}^{a\left(a^2+a-12\right)=0}\)<=>\(\int_{b=6-a}^{a\left(a+4\right)\left(a-3\right)=0}\)

đến đây bạn tự tìm a;b rufit hay vào tìm x là ok

29 tháng 6 2019

3. \(\Leftrightarrow\sqrt[3]{2x^2}-\sqrt[3]{x+1}+\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}=0\)

\(\Leftrightarrow\frac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{2x^2-x-1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}=0\)

\(\Leftrightarrow2x^2-x-1=0\)

( do \(\frac{1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}>0\forall xTMĐK\))

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=\frac{9}{8}\Leftrightarrow\left(x-\frac{1}{4}\right)^2=\frac{9}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}=\frac{3}{4}\\x-\frac{1}{4}=-\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\) ( TM )

8 tháng 8 2016

36 ở chỗ +1 nhân lên đó do nó k có mẫu

8 tháng 8 2016

Em không hiểu, Ad có thể giảng kĩ một tí nữa được không ạ>

27 tháng 6 2016

undefined

27 tháng 6 2016

...,,,,,,,,,,@ giải một bài toán 

6 tháng 3 2017

\(x^2-2x+m-1=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=8-4m\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=\dfrac{-b}{a}\\S=x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=2\\S=m-1\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8-4m>0\\2>0\left(đúng\right)\\m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\)

\(\Leftrightarrow1< m< 2\) ( thỏa mãn yêu cấu đề bài )

11 tháng 8 2016

ta có

đen ta=4-4(m-1)

=-4m+8m+8

=-(2m-2)2+12>0

để pt có 2no phân biệt dương thì áp dunhj công thức \(\begin{cases}x1x2>0\\x1+x2=\frac{-c}{a}\end{cases}\)

 

 

 

 

 

 

 

Bài 1:a=b*\(\frac{m}{n}\)

Bài 2:b=a:\(\frac{3}{2}\)

Bài 3:cho hỏi tỉ số % hở

23 tháng 12 2017

a) lấy số đằng trước chia số đằng sau rồi nhân với 100

b) làm tương tự, cái dưới nhớ đổi đơn vị

c) lấy số phía sau chia số phía trước sau đó nhân với 100

NV
20 tháng 2 2020

\(b.cosC+c.cosB=b.\frac{a^2+b^2-c^2}{2ab}+c.\frac{a^2+c^2-b^2}{2ac}\)

\(=\frac{a^2+b^2-c^2}{2a}+\frac{a^2+c^2-b^2}{2a}=\frac{a^2+b^2-c^2+a^2+c^2-b^2}{2a}=\frac{2a^2}{2a}=a\)

Hai cái dưới chứng minh y hệt