K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11000 nha :>

18 tháng 9

9999 + 56 + 1 + 44

= (9999 + 1) + (56 + 44)

= 10000 + 100

= 10100

13 tháng 10 2017

=>7777^9*1111=(7777^9)^1111=69993^1111

    9999^7*1111=(9999^7)^1111=69993^1111

vì 69993=69993=>7777^9999=9999^7777

21 tháng 7 2017

\(\frac{1}{255}+\frac{1}{323}+...+\frac{1}{9999}\)

=\(\frac{1}{15.17}+\frac{1}{17.19}...+\frac{1}{99.101}\)

=\(\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

=\(\frac{1}{15}-\frac{1}{101}\)

\(\frac{86}{1515}\)

Xong roài đó bạn

21 tháng 7 2017

Đặt \(A=\frac{1}{225}+\frac{1}{323}+\frac{1}{399}+....+\frac{1}{9999}\)

\(A=\frac{1}{15.17}+\frac{1}{17.19}+\frac{1}{19.21}+...+\frac{1}{99.101}\)

\(2A=\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{1}{15}-\frac{1}{101}=\frac{86}{1515}\)

\(\Rightarrow A=\frac{86}{1515}\div2=\frac{43}{1515}\)

11 tháng 8 2017

a, ta có:VT=0 \(\Rightarrow56^{56}-56^{56}< 56^{56}-56^{54}\)

b,Ta có:\(27^5.7^{16}=(3^3)^5.7^{16}\)\(\Leftrightarrow3^{15}.7^{16}\)

nhận thấy:\(3^5< 3^{15}\);\(7^{15}< 7^{16}\)

\(\Rightarrow3^5.7^{15}< 27^5.7^{16}\)

11 tháng 8 2017

Minh cam on ban nha !

22 tháng 5 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{98}{303}\)

\(A=\frac{49}{303}\)

22 tháng 5 2016

A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

2A=\(\frac{1}{3}-\frac{1}{101}\)

2A=\(\frac{98}{303}\)

A=\(\frac{98}{303}.\frac{1}{2}\)

A=\(\frac{49}{303}\)

Chúc bạn học tốt!

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(\Rightarrow-A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(-A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(-2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(-2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(-2A=1-\dfrac{1}{101}\)

\(-2A=\dfrac{100}{101}\)

\(-A=\dfrac{100}{101}:2\)

\(-A=\dfrac{50}{101}\)

\(\Rightarrow A=\dfrac{-50}{101}\)

Chúc bạn học tốt!

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)

\(A=-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\)

Đặt \(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+....+\dfrac{1}{9999}\)

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2B=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(B=\dfrac{100}{101}:2=\dfrac{50}{101}\)

\(\Rightarrow A=-B=-\dfrac{50}{101}\)

24 tháng 11 2016

5x có tận cùng là 5     ;    9999 có tận cùng là 9  

=>  5x + 9999 có tận cùng là  4   mà  20y có tạn cùng là 0  

=>  ko tồn tại x;y thỏa mãn

22 tháng 4 2017

Ta có: B= (1/99+12/999-123/9999).(1/2-1/3-1/6)

             B= (1/99+12/999-123/9999).(3/6-2/6-1/6)

             B= (1/99+12/999-123/9999).0

             B= 0

22 tháng 4 2017

B = (1/99+12/999-123/9999).(1/2-1/3-1/6)

B= (1/99+12/999+123/9999).0

B=0

tk mình nha !