
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(x\ge\frac{1}{3}\)
\(x^2+5x=x\sqrt{3x-1}+\left(x+1\right)\sqrt{5x}\)
\(\Leftrightarrow2x^2+10x-2x\sqrt{3x-1}-2\left(x+1\right)\sqrt{5x}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{3x-1}+3x-1\right)+\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{5x}+5x\right]=0\)\(\Leftrightarrow\left(x-\sqrt{3x-1}\right)^2+\left(x+1-\sqrt{5x}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt{3x-1}=0\\x+1-\sqrt{5x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3x-1}\\x+1=\sqrt{5x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3x-1\\\left(x+1\right)^2=5x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1=0\\x^2-3x+1=0\end{matrix}\right.\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\left(tm\right)\)

Lời giải:
Gọi biểu thức cần rút gọn là $P$
Xét tử số: $\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3.1}+1}-\sqrt{3}$
$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{3}=|\sqrt{3}+1|-\sqrt{3}=1$
Xét mẫu số:
Ta dự đoán sẽ rút gọn được $\sqrt[3]{17\sqrt{5}-38}$
Đặt $17\sqrt{5}-38=(a+\sqrt{5})^3$ với $a$ nguyên.
$\Leftrightarrow 17\sqrt{5}-38=a^3+15a+\sqrt{5}(3a^2+5)$
$\Rightarrow 17=3a^2+5$ và $-38=a^3+15a$
$\Rightarrow a=-2$
Vậy $17\sqrt{5}-38=(-2+\sqrt{5})^3$
$\Rightarrow (\sqrt{5}+2)\sqrt[3]{17\sqrt{5}-38}=(\sqrt{5}+2)(-2+\sqrt{5})=1$
Vậy $P=\frac{1}{1}=1$

\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\\ =\dfrac{3\left(3-\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{6}}=\dfrac{\left(9-3\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{6}-18-6\sqrt{3}+6\sqrt{2}-9\sqrt{2}+6\sqrt{3}}{2}\\ =\dfrac{9\sqrt{6}-3\sqrt{2}-18}{2}\)
\(7,=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-2-\sqrt{3}\\ =\sqrt{3}+2+\sqrt{2}+1-2-\sqrt{3}=1+\sqrt{2}\)
\(10,\dfrac{1}{\sqrt{a}+\sqrt{a+2}}=\dfrac{\sqrt{a}-\sqrt{a+2}}{a-a-2}=\dfrac{\sqrt{a-2}-\sqrt{a}}{2}\)
Do đó \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{47}+\sqrt{49}}\)
\(=\dfrac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{49}-\sqrt{47}}{2}=\dfrac{-1+\sqrt{49}}{2}=\dfrac{7-1}{2}=3\)
10, \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{17}+\sqrt{19}}=\dfrac{\sqrt{1}-\sqrt{3}}{\left(\sqrt{1}+\sqrt{3}\right)\left(\sqrt{1}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+...+\dfrac{\sqrt{17}-\sqrt{19}}{\left(\sqrt{17}+\sqrt{19}\right)\left(\sqrt{17}-\sqrt{19}\right)}=\dfrac{1-\sqrt{3}+\sqrt{3}-\sqrt{5}+...+\sqrt{17}-\sqrt{19}}{-2}=-\dfrac{1-\sqrt{19}}{2}\)



a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: góc EAH=90 độ-goc ABC
góc ECB=90 độ-góc ABC
=>góc EAH=góc ECB
c: góc xAC=góc ABC
=>góc xAC=góc ADE
=>xy//DE

Bài 5:
a: Xét (O) có
ΔDMN nội tiếp
MN là đường kính
Do đó: ΔDMN vuông tại D
giúp gì bn ?
Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.