K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-7x^4-8x^4+56x^3-40x^3+280x^2-309x^2+2163x-2150x\)

\(=x^4\left(x-7\right)-8x^3\left(x-7\right)-40x^2\left(x-7\right)-309x\left(x-7\right)-2150x\)

\(=\left(x-7\right)\left(x^4-8x^3-40x^2-309x\right)-2150x\)

\(=\left(7-7\right)\left(7^4-8\cdot7^3-40\cdot7^2-309\cdot7\right)-2150\cdot7=-15050\)

NV
2 tháng 4 2019

Bài 1:

a/\(xy\ne0\), nhân cả tử và mẫu với \(xy\) ta được:

\(\frac{x^2+y^2-2xy}{x^2-y^2}=\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\frac{x-y}{x+y}\)

b/ \(x\ne\pm1\), nhân cả tử và mẫu với \(x^2-1=\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{x^2-1-2\left(x-1\right)}{x^2-1-\left(x^2-2\right)}=\frac{x^2-2x+1}{1}=\left(x-1\right)^2\)

c/ \(x\ne\pm1\), nhân cả tử và mẫu với \(\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2}=\frac{x^2+2x+1-x^2+2x-1}{x^2-1-x^2+2x-1}=\frac{4x}{2x}=2\)

NV
2 tháng 4 2019

Bài 2:

a/ Xem lại đề, thấy có vẻ ko đối xứng lắm, \(\frac{2x+1}{2x-2}\) hay \(\frac{2x+1}{2x-1}\) bạn?

b/ \(x\ne\left\{-1;0;1\right\}\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x-2}{x+1}\right):\left(\frac{x^2-2x+1}{x}\right)\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x\left(x+2\right)}{x\left(x+1\right)}\right).\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x^2+2x+1\right)}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x+1\right)^2}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}=\frac{x+1}{\left(x-1\right)^2}\)

12 tháng 3 2020

\(a.\frac{7x-3}{x-1}=\frac{2}{3}\\\Leftrightarrow \frac{3\left(7x-3\right)}{3\left(x-1\right)}= \frac{2\left(x-1\right)}{3\left(x-1\right)}\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\\Leftrightarrow 3\left(7x-3\right)-2\left(x-1\right)=0\\ \Leftrightarrow21x-9-2x+2=0\\ \Leftrightarrow19x-7=0\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\frac{7}{19}\)

\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{4\left(3-7x\right)}{2\left(1+x\right)}=\frac{1\left(1+x\right)}{2\left(1+x\right)}\\\Leftrightarrow 4\left(3-7x\right)=1\left(1+x\right)\\ \Leftrightarrow4\left(3-7x\right)-1\left(1+x\right)=0\\ \Leftrightarrow12-28x-1-x=0\\ \Leftrightarrow11-29x=0\\ \Leftrightarrow-29x=-11\\ \Leftrightarrow x=\frac{-11}{-29}=\frac{11}{29}\)

\(c.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x+2\right)\left(3x-1\right)}\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)-\left(5x-7\right)\left(3x+2\right)=0\\ \Leftrightarrow15x^2-5x-3x+1-15x^2-10x+21x+14=0\\ \Leftrightarrow3x+15=0\\\Leftrightarrow 3x=-15\\\Leftrightarrow x=-5\)

\(d.\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\\Leftrightarrow \frac{\left(4x+7\right)\left(3x+4\right)}{\left(x-1\right)\left(3x+4\right)}=\frac{\left(12x+5\right)\left(x-1\right)}{\left(3x+4\right)\left(x-1\right)}\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)-\left(12x+5\right)\left(x-1\right)=0\\ \Leftrightarrow12x^2+16x+21x+28-12x^2-12x+5x-5=0\\ \Leftrightarrow30x+23=0\\ \Leftrightarrow30x=-23\\ \Leftrightarrow x=\frac{-23}{30}\)

\(e.\frac{1}{x-2}+3=\frac{3-x}{x-2}\\ \Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\\ \Leftrightarrow1+3\left(x-2\right)=3-x\\\Leftrightarrow 1+3x-6=3-x\\\Leftrightarrow 1+3x-6-3+x=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\)

12 tháng 3 2020

\(f.\frac{8-x}{x-7}-8=\frac{1}{x-7}\\ \Leftrightarrow\frac{8-x}{x-7}-\frac{8\left(x-7\right)}{x-7}=\frac{1}{x-7}\\ \Leftrightarrow8-x-8\left(x-7\right)=1\\ \Leftrightarrow8-x-8\left(x-7\right)-1=0\\\Leftrightarrow 8-x-8x+56-1=0\\\Leftrightarrow 63-9x=0\\\Leftrightarrow -9x=-63\\ \Leftrightarrow x=\frac{-63}{-9}=7\)

\(g.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\\ \Leftrightarrow\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\\Leftrightarrow \frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\\\Leftrightarrow \left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)-20=0\\ \Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25-20=0\\ \Leftrightarrow20x-20=0\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\)

\(j.\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\\\Leftrightarrow \frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2.2x}{2\left(x+1\right)\left(x-3\right)}\\ \Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\\\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\\\Leftrightarrow x^2+x+x^2-3x-4x=0\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right. \)

15 tháng 12 2018
https://i.imgur.com/eszN8eV.jpg

Bài 3:

a: ĐKXĐ: x<>2

b: \(M=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

c: Khi x=4001/2000 thì \(M=\dfrac{3}{\dfrac{4001}{2000}-2}=3:\dfrac{1}{2000}=6000\)

30 tháng 8 2017

a) ( 5x3 - x +2 ) ( x-1 )
= 5x4 -5x3 - x2 + 1 + 2x - 2
= 5x4 -5x3 - x2 2x - 1
b) ( 4x + 4 )(3 - x2 - x3 )
= 12x - 8x3 - 4x4 + 12 - 4x2 - 4x3
= -4x4 - 12x3 -4x2 + 12x + 12

30 tháng 8 2017

a) (5x3-x+2)(x-1) = 5x4-5x3-x2+3x-2

b) (4x+4)(3-x2-x3) = 12x-4x3-4x4+12-4x2-4x3 = -4x4 -8x3 - 4x2 + 12x +12

NV
3 tháng 4 2019

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi

Bài 1:

a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)

\(\Leftrightarrow11-2x-3=3x-12\)

\(\Leftrightarrow5x=20\)

\(\Rightarrow x=4\)

b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)

\(\Leftrightarrow10x-15-20x+28=19-2x\)

\(\Leftrightarrow8x=-6\)

\(\Rightarrow x=-\frac{3}{4}\)

c/

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow x=3\)

NV
3 tháng 4 2019

d/

\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow79x=158\)

\(\Rightarrow x=2\)

e/

\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)

\(\Leftrightarrow0=-121\) (vô lý)

Vậy pt vô nghiệm

f/

\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow6x=-5\)

\(\Rightarrow x=-\frac{5}{6}\)

2 tháng 12 2017

\(a,x^2\left(x-2x^3\right)=x^3-3x^5\)

\(b,\left(x^2+1\right)\left(5-x\right)=5x^2-x^3+5-x\)

\(c,\left(x-2\right)\left(x^2+3x-4\right)=x^3+3x^2-4x-2x^2-6x+8\)

\(=x^3+x^2-10x+8\)

\(d,\left(x-2\right)\left(x-x^2+4\right)=x^2-x^3+4x-2x+2x^2-8\)

\(=x^3+3x^2+2x-8\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Vy Lê: bạn ơi hướng làm của bài là khai triển biểu thức đơn giản và phát hiện 1 số biểu thức có liên quan đến hằng đẳng thức thôi nên mình nghĩ mình làm như vậy cũng có ngắn lắm đâu nhỉ? Ví dụ như câu c chả hạn. $(2x+3)(4x^2-6x+9)=(2x)^3+3^3$ là hằng đẳng thức đáng nhớ rồi nên mình áp dụng luôn. $2(4x^3-3)=8x^3-6$ theo khai triển thông thường.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:
a)

$(-x-3)^3+(x+9)(x^2+27)$

$=(x+9)(x^2+27)-(x+3)^3$

$=x^3+27x+9x^2+243-(x^3+9x^2+27x+27)$

$=216$

b)

$(x+2)^3-x(x^2+6x-5)-8$

$=x^3+6x^2+12x+8-x^3-6x^2+5x-8$

$=17x$

c)

$(2x+3)(4x^2-6x+9)-2(4x^3-3)$

$=(2x)^3+3^3-2(4x^3-3)=8x^3+27-8x^3+6=33$

12 tháng 3 2020

\(h.\left(x+1\right)\left(x-1\right)^2-\left(x+1\right)\left(x-2\right)^2=0\\\Leftrightarrow \left(x+1\right)\left(x-1-x+2\right)\left(x-1+x-2\right)=0\\\Leftrightarrow \left(x+1\right)\left(2x-3\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;\frac{3}{2}\right\}\)

12 tháng 3 2020

\(f.x^3+1+\left(x^2-x+1\right)=0\\\Leftrightarrow \left(x+1\right)\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\\ \Leftrightarrow\left(x+1+1\right)\left(x^2-x+1\right)=0\\ \Leftrightarrow x+2=0\\\Leftrightarrow x=-2\)

Vậy nghiệm của phương trình trên là \(-2\)

12 tháng 3 2020

hu hu !! Sao ko có ai làm giúp em hết vậy!

Ngày mai em bị ăn đòn mất!!!hu hu

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

a) Bạn xem lại vế phải của PT là $x^2-1$ hay $x^3-1$?

b) ĐK: $x\neq \pm 4$

PT \(\Leftrightarrow 5+\frac{48}{x-8}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=\frac{2(x+4)-9}{x+4}+\frac{3(x-4)+11}{x-4}\)

\(\Leftrightarrow 5+\frac{48}{x-8}=2-\frac{9}{x+4}+3+\frac{11}{x-4}\)

\(\Leftrightarrow \frac{48}{x-8}=\frac{11}{x-4}-\frac{9}{x+4}=\frac{11(x+4)-9(x-4)}{(x-4)(x+4)}=\frac{2x+80}{x^2-16}\)

\(\Leftrightarrow \frac{24}{x-8}=\frac{x+40}{x^2-16}\Rightarrow 24(x^2-16)=(x-8)(x+40)\)

\(\Leftrightarrow 24x^2-384=x^2+32x-320\)

\(\Leftrightarrow 23x^2-32x-64=0\Rightarrow x=\frac{16\pm 24\sqrt{3}}{23}\) (cảm giác đề cứ sai sai)

c)

ĐK: $x\neq \pm \frac{2}{3}$

\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow \frac{(3x+2)^2-6(3x-2)}{(3x-2)(3x+2)}=\frac{9x^2}{(3x-2)(3x+2)}\)

\(\Rightarrow (3x+2)^2-6(3x-2)=9x^2\)

\(\Leftrightarrow 9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow -6x+16=0\Rightarrow x=\frac{8}{3}\)

20 tháng 9 2019

Bài 2:

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(A=12x\left(x-2\right)+xy\left(x-2\right)\left(y+6\right)+3y\left(y+6\right)+36\)

Đặt \(x\left(x-2\right)=a;y\left(y+6\right)=b\)

\(A=12a+ab+3b+36\)

\(A=a\left(b+12\right)+3\left(b+12\right)\)

\(A=\left(b+12\right)\left(a+3\right)\)

\(A=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(A=\left[\left(x-1\right)^2+2\right]\left[\left(y+9\right)^2+3\right]>0\forall x;y\)

Bài 3:

\(3xy+x+15y-164=0\)

\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)-169=0\)

\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=169\)

Tới đây xét ước là xong.

p/s: Còn 2 bài trưa về giải nốt em nhé.

20 tháng 9 2019

Bài 4:*Tìm Max

Xét hiệu: \(5x^2+8xy+5y^2-A=4x^2+8xy+4y^2=4\left(x+y\right)^2\ge0\)

Từ đó \(A\le5x^2+8xy+5y^2=72\)

Đẳng thức xảy ra khi x =-y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) =(6;-6) và (-6 ; 6)

Vậy Max A là 72.

*Tìm min:

Xét hiệu: \(9A-\left(5x^2+8xy+5y^2\right)=4x^2-8xy+4y^2=4\left(x-y\right)^2\)

Do đó \(9A\ge5x^2+8xy+5y^2=72\Rightarrow A\ge8\)

Đẳng thức xảy ra khi x = y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) = (2;2) ; (-2;-2)

Vậy...

P/s: Check lại cái "đẳng thức xảy ra khi..." nhé, có thể nhầm lẫn đấy.