Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{13\times15}+\dfrac{2}{15\times17}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=1-\dfrac{1}{17}\)
\(=\dfrac{16}{17}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{15\cdot17}\)
\(=2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{17}\)
\(=2-\dfrac{1}{17}\)
\(=\dfrac{33}{17}\)



\(2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\right)=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}=1-\frac{1}{15}=\frac{14}{15}\)
\(=2.2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=4.\left(1-\frac{1}{15}\right)\)
\(=4.\frac{14}{15}\)
\(=\frac{56}{15}\)

\(\text{Đặt }A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}+\frac{1}{15.17}\)
\(\Leftrightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{15.17}\)
\(\Leftrightarrow2A=\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+\frac{17-15}{15.17}\)
\(\Leftrightarrow2A=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+...+\frac{17}{15.17}-\frac{15}{15.17}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{15}-\frac{1}{17}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{7}\)
\(\Leftrightarrow2A=\frac{4}{21}\)
\(\Rightarrow A=\frac{4}{21}\times\frac{1}{2}\)
\(\Rightarrow A=\frac{2}{21}\)


\(A=\frac{1}{3}-\frac{1}{17}=\frac{14}{51}\)
cách làm thì tự biết
trên mạng đầy
kết quả đúng phải là 7/51 chứ bn
mk cần cách trình bày thôi
câu trả lời của bn hơi lạnh nhạt tí ^.^

\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)

\(2\cdot\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right)\)
Theo quy luật :\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(2.\left(1-\frac{1}{15}\right)\)
\(2.\frac{14}{15}\)
\(\frac{28}{15}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\cdots+\frac{2}{15\times17}\)
\(=\frac11-\frac13+\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{15}-\frac{1}{17}\)
\(=\frac11-\frac{1}{17}=\frac{16}{17}\)
1×32+3×52+5×72+⋯+15×172
\(= \frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \hdots + \frac{1}{15} - \frac{1}{17}\)
\(= \frac{1}{1} - \frac{1}{17} = \frac{16}{17}\)