K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6

\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}=\dfrac19\)

\(\lrArr\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}=\dfrac19\)

\(\lrArr\dfrac{\left(x+4\right)\left(x+6\right)+x\left(2x+8\right)}{x\left(x+2\right)\left(x+4\right)\left(x+6\right)}=\dfrac19\)

\(\lrArr\dfrac{3x^2+18x+24}{x\left(x+2\right)\left(x+4\right)\left(x+6\right)}=\dfrac19\)

\(\rArr\left(3x^2+18x+24\right)\cdot9=x\left(x+2\right)\left(x+4\right)\left(x+6\right)\)

\(\lrArr x^4+12x^3+44x^2+48x=27x^2+162x+216\)

\(\lrArr x^4+12x^3+17x^2-114x-216=0\)

Thử \(x=3\) , ta được:

\(x^4+12x^3+17x^2-114x-216=81+324+153-342-216=0\)

Do đó: \(x=3\) là nghiệm của phương trình

Vậy nghiệm của phương trình là \(x=3\)

KHÔNG CHẮC LÀ ĐÚNG HẲN ĐÂU Ạ!

25 tháng 6

`1/(x^2+2x)+1/(x^2+6x+8)+1/(x^2+10x+24)=1/9(x\ne0;x\ne-2,x\ne-4,x\ne-6)`

`1/(x(x+2))+1/((x+2)(x+4))+1/((x+4)(x+6))=1/9`

`2/(x(x+2))+2/((x+2)(x+4))+2/((x+4)(x+6))=2/9`

`1/x-1/(x+2)+1/(x+2)-1/(x+4)+1/(x+4)-1/(x+6)=2/9`

`1/x-1/(x+6)=2/9`

`(x+6-x)/(x(x+6))=2/9`

`6/(x(x+6))=2/9`

`3/(x(x+6))=1/9`

`x(x+6)=27`

`x^2+6x-27=0`

`(x^2+9x)+(-3x-27)=0`

`x(x+9)-3(x+9)=0`

`(x-3)(x+9)=0`

`x=3(N)` hoặc `x=-9(N)`

Vậy: `S={3;-9}`

12 tháng 2 2019

\(ĐKXĐ:x\ne0;-2;-4;-6;-8\)\(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}=\frac{4}{105}\)

\(\Leftrightarrow\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+6\right)\left(x+8\right)}=\frac{8}{105}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+...+\frac{1}{x+6}-\frac{1}{x+8}=\frac{8}{105}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+8}=\frac{8}{105}\)

Quy đồng làm nốt

3 tháng 9 2017

ta có đề bài <=> 

\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

<=> \(\left|x-3\right|+\left|x+5\right|=8\)

<=>\(\left|3-x\right|+\left|x+5\right|=8\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)

dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)

đến đây bạn tự giaỉ dấu = nhé

bỏ số 1 ở đầu thì giải dc á, còn có số 1 thì chịu

11 tháng 7 2017

\(\dfrac{1}{x+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)

\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=\dfrac{4}{105}\)

\(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)

\(\dfrac{x+8-x}{x\left(x+8\right)}=\dfrac{8}{105}\)

\(\dfrac{8}{x.\left(x+8\right)}=\dfrac{8}{105}\)

\(\Rightarrow x\left(x+8\right)=105\)

\(x^2+8x-105=0\)

\(\left(x-7\right)\left(x+15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)

23 tháng 3 2019

a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)

\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)

\(\Leftrightarrow96x+744=-6x+48\)

\(\Leftrightarrow102x=-696\)

\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)

Vậy .....

b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)

\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)

\(\Leftrightarrow x=-5\) (nhận)

Vậy ....

9 tháng 5 2020

tks nha

17 tháng 12 2017

\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)

\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)

\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(B=\dfrac{32}{1-x^{32}}\)

16 tháng 8 2018

\(a.\dfrac{2x-1}{x-1}+\dfrac{x}{x^2-3x+2}=\dfrac{6x-2}{x-2}\left(x\ne2;x\ne1\right)\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-2\right)+x}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(6x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow2x^2-4x-x+2+x=6x^2-6x-2x+2\)

\(\Leftrightarrow2x^2-5x+2=6x^2-8x+2\)

\(\Leftrightarrow4x^2-3x=0\)

\(\Leftrightarrow x\left(4x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{3}{4}\left(TM\right)\end{matrix}\right.\)

KL........

\(b.A=\sqrt{x^2-x+1\dfrac{1}{4}}-2016=\sqrt{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1}-2016=\sqrt{\left(x-\dfrac{1}{2}\right)^2+1}-2016\ge1-2016=-2015\)

\(\Rightarrow A_{Min}=-2015."="\Leftrightarrow x=\dfrac{1}{2}\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

26 tháng 5 2020

PT<=> \(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}=\frac{4}{105}\)

<=> \(\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+6\right)\left(x+8\right)}=\frac{8}{105}\)

<=> \(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-...+\frac{1}{x+6}-\frac{1}{x+8}=\frac{8}{105}\)

<=> \(\frac{1}{x}-\frac{1}{x+8}=\frac{8}{105}\)

<=> \(\frac{8}{x\left(x+8\right)}=\frac{8}{105}\)

<=> x(x+8) = 105

<=> x = 7