Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5
xét m lẻ=>m4 có tận cùng bằng 1
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
xét m chẵn=>m4 có tận cùng bằng 6
=>24.m4+1 có tận cùng bằng 5
=>n có tận cùng bằng 5
=>mn chia hết cho 5
từ các dữ liệu trên=>mn chia hết cho 5
=>đpcm

Giả sử 3x+5y3x+5y⋮ 77
⇒ 3x+5y−3(x+4y)3x+5y−3(x+4y)⋮ 77
⇔ −7y−7y⋮ 77
⇒ Luôn đúng
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ x+4yx+4y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 4949
Giả sử x+4yx+4y⋮ 77
⇒ 3(x+4y)3(x+4y)⋮ 77
⇒ 3(x+4y)−3x−5y3(x+4y)−3x−5y⋮ 77
⇒ 7y7y⋮ 77
⇒ 3x+5y3x+5y⋮ 77
⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7
hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 49

Giả sử tồn tại n sao cho \(S=n^2 + 3n - 38\) chia chết cho \(49\).
Khi đó xét biểu thức:
\(n^2 - 4n + 4 = n^2 + 3n - 7n -38 + 42 \)
\(= n^2 + 3n - 38 - 7(n - 6)\) chia hết cho \(7\)
Biểu thức đem xét là \(n^2 - 4n + 4\) viết \(-4n \)
\(= -7n + 3n; 4 \)
\(= -38 + 42\)
\(\Rightarrow\)\( n^2 - 4n + 4 \)
\(= (n - 2)^2\) chia hết cho \(7\) hay \(n-2\) chia hết cho \( 7\)
Gọi \(n - 2 = 7t \)
\(\Rightarrow\)\( n = 2 + 7t\). Thay vào \(S\) ta có:
\(S = (2 + 7t)^2 + 3(2 + 7t) - 38 \)
\(= 4 + 28t + 49t^2 + 6 + 21t - 38 \)
\(= 49t^2 + 49t - 28 \)
\(\Rightarrow S\) không chia hết cho \(49\)
\(\RightarrowĐpcm\)

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24
Vì \(m^2+m.n+2n^2\) ⋮ \(49\)
⇒ \(4\left(m^2+m.n+2n^2\right)\) ⋮ \(49\)
⇒ \(4m^2+4m.n+8n^2\) ⋮ \(49\)
⇒ \(\left(4m^2+4m.n+n^2\right)+7n^2\) ⋮ \(49\)
⇒ \(\left(2m+n\right)^2+7n^2\) ⋮ \(49\)
⇒ \(\left(2m+n\right)^2+7n^2\) ⋮ \(7\)
Mà \(7n^2\) ⋮ \(7\)
⇒ \(\left(2m+n\right)^2\) ⋮ \(7\)
*Nếu \(k^2\) ⋮ \(7\) ⇒ \(k\) ⋮\(7\) ⇒ \(\left(2m+n\right)\) ⋮ \(7\)
⇒ \(\left(2m+n\right)^2\) ⋮ \(49\)
⇒ \(7n^2\) ⋮ \(49\)
⇒ \(n^2\) ⋮ \(7\)
⇒ \(n^{}\) ⋮ \(7\) (1)
⇒ \(2m\) ⋮ \(7\)
Do \(2\) và \(7\) là hai số nguyên tố cùng nhau ⇒ \(m\) ⋮ \(7\) (2)
(1)(2) ⇒ \(n^2\) ⋮ \(49\) và \(m^2\) ⋮ \(49\)
⇒ \(\left(n^2+m^2\right)\) ⋮ \(49\)