\(D=101^2+102^2+103^2+\cdots+200^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6

\(D=101^2+102^2+103^2+\cdots+200^2\)

\(D=101.\left(102-1\right)+102.\left(103-1\right)+103.\left(104-1\right)+\cdots+200.\left(201-1\right)\)

\(D=\left(101.102+102.103+103.104+\cdots+200.201\right)-\left(101+102+103+\cdots+200\right)\)

Đặt \(\left(101.102+102.103+103.104+\cdots+200.201\right)=A\)

\(3A=\left(103-100\right).101.102+\left(104-101\right).102.103+\left(105-102\right).103.104+\cdots+\left(202-199\right).200.201\)

\(3A=101.102.103-100.101.102+102.103.104-101.102.103+103.104.105-102.103.104+\cdots+200.201.202-199.200.201\)

\(3A=-\left(100.101.102\right)+200.201.202\) \(\)

\(3A=-1030200+8120400\)

\(3A=7090200\)

\(A=2363400\)

Đặt \(\left(101+102+103+\cdots+200\right)=B\)

Số số hạng của dãy B là: \(\frac{\left(200-101\right)}{1}+1=100\) (số hạng)

\(B=\frac{\left(101+200\right).100}{2}=15050\)

\(D=A-B=2363400-15050=2348350\)

Vậy tổng dãy \(D=2348350\)

21 tháng 6

D = 101\(^2\) + 102\(^2\) + ... + 200\(^2\)

D = 101.(100 + 1) + 102.(101 + 1) + ...+ 200.(199 + 1)

D = 101.100 + 101 + 102.101 + 102 + ...+ 200.199 + 200

D = (100.101 + 101.102 +... + 199.200) + (101 + 102+...+200)

Đặt B = 100.101 + 101.102 + ...+ 199.200

C = 101 + 102 + ... + 200

100.101.3 = 100.101.(102 - 99) = 100.101.102-99.100.101

101.102.3 = 101.102.(103 - 100)= 101.102.103 - 100.101.102

............................................................................................................................

199.200. 3 = 199.200.(201-198) = 199.200.201 - 198.199.200

Cộng vế với vế ta có:

3.B = 199.200.201 - 99.100.101

3.B =7999800 - 999900

3B = 6999900

B = 6999900 : 3

B = 2333300

C = 101 + 102 + 103 + ... + 200

C = (200 + 101) x { [(200 -101) : 1 + 1] : 2}

C = 301 x {100 : 2}

C = 301 x 50

C = 15050

D = B + C

D = 2333300 + 15050

D = 2348350

2 tháng 8 2019

#)Giải :

Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)

\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)

Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)

10 tháng 5 2019

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)

17 tháng 4 2016

đề sai rồi bạn!

7 tháng 5 2017

1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )

1/101+1/102+....+1/200(có 100 số )

Vì 1/101>1/200

1/102>1/100

......

1/199>1/200

1/200=1/200

=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số

=>1/101+1/102+.....+1/200>1/2

7 tháng 5 2017

Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)

Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên : 

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)

3 tháng 5 2015

1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)\(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)

19 tháng 3 2018

cậu giỏi quá

20 tháng 4 2016

1233333333333

25 tháng 4 2017

Ta có:

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{2}\)

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn