Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!

a: Xét ΔHAD vuông tại H có HA=HD
nên ΔHAD vuông cân tại H
=>\(\hat{HDA}=\hat{HAD}=45^0\)
Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\hat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(\frac{CD}{CA}=\frac{CE}{CB}\)
=>\(\frac{CD}{CE}=\frac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\frac{CD}{CE}=\frac{CA}{CB}\)
góc DCA chung
Do đó: ΔCDA~ΔCEB
=>\(\hat{CDA}=\hat{CEB}\)
mà \(\hat{CDA}+\hat{ADB}=180^0\) (hai góc kề bù)
và \(\hat{CEB}+\hat{AEB}=180^0\) (hai góc kề bù)
nên \(\hat{AEB}=\hat{ADB}=45^0\)
=>ΔABE vuông cân tại A
=>AB=AE
b: ΔABE cân tại A
mà AM là đường trung tuyến
nên AM⊥BE tại M
Xét ΔBMA vuông tại M và ΔBAE vuông tại A có
\(\hat{MBA}\) chung
Do đó: ΔBMA~ΔBAE
=>\(\frac{BM}{BA}=\frac{BA}{BE}\)
=>\(BM\cdot BE=BA^2\left(1\right)\)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\hat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\frac{BH}{BA}=\frac{BA}{BC}\)
=>\(BH\cdot BC=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BM\cdot BE=BH\cdot BC\)
=>\(\frac{BM}{BC}=\frac{BH}{BE}\)
Xét ΔBMH và ΔBCE có
\(\frac{BM}{BC}=\frac{BH}{BE}\)
góc MBH chung
Do đó: ΔBMH~ΔBCE
=>\(\hat{BMH}=\hat{BCE}=\hat{HAB}\)
Gọi I là giao điểm của MB và AH
Xét ΔIMH và ΔIAB có
\(\hat{IMH}=\hat{IAB}\)
\(\hat{MIH}=\hat{AIB}\) (hai góc đối đỉnh)
Do đó: ΔIMH~ΔIAB
=>\(\hat{IHM}=\hat{IBA}=45^0\)
=>\(\hat{AHM}=45^0\)

a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)
\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)
mà \(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)
nên \(\hat{CAD}=\hat{HAD}\)
=>AD là phân giác của góc HAC
b: Xét ΔAHD và ΔAED có
AH=AE
\(\hat{HAD}=\hat{EAD}\)
AD chung
Do đó: ΔAHD=ΔAED
=>\(\hat{AHD}=\hat{AED}\)
=>\(\hat{AED}=90^0\)
=>ED⊥AC
mà HK⊥AC
nên HK//ED
=>HKED là hình thang
c: ΔAHD=ΔAED
=>DH=DE
=>D nằm trên đường trung trực của HE(1)
Ta có: AH=AE
=>A nằm trên đường trung trực của HE(2)
Từ (1),(2) suy ra AD là đường trung trực của HE
=>AD⊥HE
Xét ΔAEH có
HK,AD là các đường cao
HK cắt AD tại I
Do đó: I là trực tâm của ΔAEH
=>EI⊥AH tại F
mà HC⊥HA
nên EF//HC
=>EFHC là hình thang
Hình thang EFHC có EF⊥FH
nên EFHC là hình thang vuông

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)

Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\hat{ABD}=\hat{HBD}\)
Do đó; ΔBAD=ΔBHD
=>DA=DH
b: ΔBAD=ΔBHD
=>BA=BH
Xét ΔBAC vuông tại A và ΔBHK vuông tại H có
BA=BH
\(\hat{ABC}\) chung
Do đó: ΔBAC=ΔBHK
=>BC=BK