K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4

ta có:

10 tháng 4

ta có : 25\(-y^2=8(\)\(x-2014)^2\)
\(8(x-2014)^2\ge0với\forall x\)
\(=>25-y^2\ge0\)
Mà x; y là số tự nhiên nên: \(25-8(x-2014)^2=y^2\)
\(=>y^2\le25\) và là số chính phương
\(=>y^2\in\) {0;1;4;9;16;25}
* TH1: \(y^2=\) 0
\(=\) > \(25-8(x-2014)^2=0\)
\(8(x-2014)^2=25\)
\((x-2014)^2=\frac{25}{8}\)\((loạivìx\in N)\)
các trường hợp sau làm tương tự đến khi tìm được x là số tự nhiên, sau đó suy ra y
nhớ tick nha.

28 tháng 12 2018

bn ơi câu a có sai đề k

29 tháng 12 2018

a) Sai đề

b) \(25-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)

Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)

\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)

Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)

Bài 1. Tồn tại hay không cặp số tự nhiên \(\left(\right. x , y \left.\right)\) sao cho\(\left(\right. 2 x + y \left.\right) \left(\right. 10 x + 3 y \left.\right) = 2^{2025} + 2 ?\)Bài 2. Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì không chia hết cho 10.Bài 3. Cho \(n \in \mathbb{N}\), chứng minh rằng:a) \(\left(\right. 7^{n} + 1 \left.\right) \left(\right. 7^{n} + 2 \left.\right)\)...
Đọc tiếp

Bài 1. Tồn tại hay không cặp số tự nhiên \(\left(\right. x , y \left.\right)\) sao cho

\(\left(\right. 2 x + y \left.\right) \left(\right. 10 x + 3 y \left.\right) = 2^{2025} + 2 ?\)

Bài 2. Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì không chia hết cho 10.

Bài 3. Cho \(n \in \mathbb{N}\), chứng minh rằng:

a) \(\left(\right. 7^{n} + 1 \left.\right) \left(\right. 7^{n} + 2 \left.\right)\) chia hết cho 3;
b) \(n^{2} + n + 6\) không chia hết cho 5.

Bài 4. Chứng minh rằng với mọi số tự nhiên \(n\) ta có:

a) \(\left(\right. 3 n + 2019 \left.\right) \left(\right. 7 n + 2020 \left.\right)\) chia hết cho 2;
b) \(n \left(\right. n + 2 \left.\right) \left(\right. n + 7 \left.\right)\) chia hết cho 3;
c) \(n \left(\right. 3 n + 1 \left.\right) \left(\right. 5 n + 2 \left.\right) \left(\right. 7 n + 3 \left.\right)\) chia hết cho 4.

Bài 5. Chứng minh rằng:

a) Chứng minh rằng tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4;
b) Chứng minh rằng tích của 4 số chẵn liên tiếp thì chia hết cho 384.



2

Bài 5:

a: Gọi bốn số tự nhiên liên tiếp là a;a+1;a+2;a+3

Tổng của bốn số tự nhiên liên tiếp là:

a+a+1+a+2+a+3=4a+6=4a+4+2=4(a+1)+2 không chia hết cho 4

=>ĐPCM

b: Gọi bốn số chẵn liên tiếp là 2k;2k+2;2k+4;2k+6

Tích của bốn số chẵn liên tiếp là:

\(2k\left(2k+2\right)\left(2k+4\right)\left(2k+6\right)\)

\(=2k\cdot2\left(k+1\right)\cdot2\left(k+2\right)\cdot2\left(k+3\right)=16k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)

Vì k;k+1;k+2;k+3 là bốn số nguyên liên tiếp

nên k(k+1)(k+2)(k+3)⋮4!

=>k(k+1)(k+2)(k+3)⋮24

=>16k(k+1)(k+2)(k+3)⋮16*24=384

=>2k(2k+2)(2k+4)(2k+6)⋮384


13 tháng 9

giúp mình câu 1 đc ko bn

29 tháng 8

câu hỏi này có thể hơi khó đó , mong mọi người sẽ nhanh chóng tìm ra đáp án

là các hoán vị của (2, 3, 6) và (2, 4, 4) là không thỏa mãn điều kiện khác nhau, nên chỉ cònkhông có bộ ba nào.

8 tháng 3 2019

3. Tìm x biết: |15-|4.x||=2019

\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)

vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)

KL: x=508,5

1 tháng 5 2018

Thay F(1) với x =1 vào thôi 

G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a 

1 tháng 5 2018

Ta có \(f\left(1\right)=g\left(2\right)\)

=> \(2+a+4=4-20-b\)

=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)

=> \(2+a+4-4+20+b=0\)

=> \(22+a+b=0\)

=> \(a+b=-22\)(1)

và \(f\left(-1\right)=g\left(5\right)\)

=> \(2-a+4=25-25-b\)

=> \(2-a+4=-b\)

=> \(2+4=a-b\)

=> \(a-b=6\)

=> \(a=6+b\)(2)

Thế (2) vào (1), ta có: \(6+b+b=-22\)

=> \(2b=-28\)

=> \(b=-14\)

và \(a=6+b=6-14=-8\)

28 tháng 3 2020

a) (1-1/2)(1-1/3)...(1-1/100)=lx-1 99/100l

=> (1-1/2)(1-1/3)...(1-1/100)=1/2.2/3.3/4...99/100

=> (1-1/2)(1-1/3)...(1-1/100)=1.2.3.4....99/2.3.4....100

=>(1-1/2)(1-1/3)...(1-1/100)=1/100      (1)

từ (1)=>1/100= l x-1 99/100 l

TH1:x-1 99/100 =1/100                 TH2 : x-1 99/100= -1/100

=>x- 199/100 =1/100                           =>x- 199/100= -1/100

=>x=1/100+199/100                            =>x=-1/100+199/100

=>x=200/100                                       =>x=198/100

=>x=2                                                  =>x=99/50

Vậy x=2 hoặc x=99/50

12 tháng 2 2019

\(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2018}=0\)

Ta  có \(\left|2x-27\right|^{2017}\ge0\forall x;\left(3y+10\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-27\right|^{2017}+\left(3.y+10\right)^{2018}\ge0\forall x;y\)

\(\Rightarrow\left|2x-17\right|^{2017}+\left(3y+10\right)^{2018}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-17=0\\3.y+10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{17}{2}\\y=-\frac{10}{3}\end{cases}}\)

8 tháng 11 2018

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !