Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)
Vì n+2 < n+4 => n + 2 = 1 => n = -1
=> A = 3 nguyên tố, thoả
B2: x + y + xy = 2
=> x(y+1) + (y+1) = 3
=> (x+1)(y+1) = 3
Ta có:
x+1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 2 | 0 | -4 | -2 |
Vậy (x,y) = .....................
B3: a : b = c dư r
=> 112 : b = 5 dư r
=> 112 : 5 = b dư r
=> 112 - r chia hết cho 5 và r < 5
=> r = 2 => b = 22

\(a^2+a-p=0\)
\(\Rightarrow a\left(a+1\right)=p\)
Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p
Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p
=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0
Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)
với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)
Vậy a = 1

\(x^2-2y^2=1\)
\(\Leftrightarrow x^2=2y^2+1\)
Vì \(x^2\)là số chính phương lẻ
\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố
\(\Rightarrow y=2;x=3\)

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)
\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).
Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).
\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).
Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).
(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).
\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).
\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).
Giải hệ:
\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)
Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).
Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)
(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).
Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).
Đáp số: \(\left(\right. 25 , 36 \left.\right)\).
(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).
Đặt \(x = a^{2} , y = b^{2}\).
\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).
\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).
\(\Rightarrow a = 2 , b = 2\).
Đáp số: \(\left(\right. 4 , 4 \left.\right)\).
👉 Vậy:
- Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
- Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
- Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
- Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
cho mik xin tick nha. Cảm ơn cậu !
Bài giải
Đề bài:
Tìm thương của hai số aa và bb, biết:
Lời giải:
a÷ba \div b
a÷b=b÷b=1a \div b = b \div b = 1
Kết luận:
Thương của hai số khác 0 mà hiệu của chúng bằng 0 là 1.