
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


4.
Đáp án A đúng
\(y'=9x^2+3>0;\forall v\in R\)
6.
Đáp án B đúng
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)


ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C

ĐKXĐ: \(2x-x^2\ge0\)
=>\(x^2-2x\le0\)
=>x(x-2)<=0
=>0<=x<=2
0<=x<=2 nên 0>=-x>=-2
=>0>=-x+1>=-2+1
=>0>=-x+1>=-1
\(y=\sqrt{2x-x^2}-x\)
=>\(y^{\prime}=\frac{\left(2x-x^2\right)^{\prime}}{2\cdot\sqrt{2x-x^2}}-1=\frac{2-2x}{2\cdot\sqrt{2x-x^2}}-1=\frac{1-x}{\sqrt{2x-x^2}}-1\)
Đặt y'<0
=>\(\frac{1-x}{\sqrt{2x-x^2}}-1<0\) (1)
=>\(\frac{1-x}{\sqrt{2x-x^2}}<1\)
TH1: 1-x<0
=>x>1
=>1<x<=2
Khi đó, ta sẽ có:\(\frac{1-x}{\sqrt{2x-x^2}}<0\) <1
=>(1) luôn đúng với mọi x>1
Kết hợp ĐKXĐ, ta được: 1<x<=2(2)
TH2: 1-x>=0
=>x<=1
(1) sẽ tương đương với: \(\frac{\left(1-x\right)^2}{2x-x^2}<1\)
=>\(\left(1-x\right)^2<2x-x^2\)
=>\(x^2-2x+1-2x+x^2\le0\)
=>\(2x^2-4x+1\le0\)
=>\(x^2-2x+\frac12\le0\)
=>\(x^2-2x+1-\frac12\le0\)
=>\(\left(x-1\right)^2\le\frac12\)
=>\(-\frac{\sqrt2}{2}\le x-1\le\frac{\sqrt2}{2}\)
=>\(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
Kết hợp ĐKXĐ, ta được: \(\frac{-\sqrt2+2}{2}\le x\le\frac{\sqrt2+2}{2}\)
=>0,29<x<1,71(3)
Từ (2),(3) suy ra Hàm số nghịch biến trên khoảng (1;2)
=>Chọn C



\(a.\left(P_1\right):2x+2y+z-3=0\Rightarrow\overrightarrow{n_1}=\left(2;2;1\right)\RightarrowĐúng\)
\(b.\left(P_2\right):x-3y+4z-5=0\Rightarrow\overrightarrow{n_2}=\left(1;-3;4\right)\Rightarrow Sai\)
\(c.\overrightarrow{n_1}.\overrightarrow{n_2}=2.1+2.\left(-3\right)+1.4=0\)
\(\Rightarrow cos\left(\widehat{\overrightarrow{n_1};\overrightarrow{n_2}}\right)=\dfrac{\left|\overrightarrow{n_1}.\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|.\left|\overrightarrow{n_2}\right|}=0\Rightarrow Sai\)
\(d.cos\left(\widehat{\overrightarrow{n_1};\overrightarrow{n_2}}\right)=cos\left(\widehat{\left(P_1;P_2\right)}\right)=0\Rightarrow\left(P_1\right)\perp\left(P_2\right)\RightarrowĐúng\)
😳😳😳