Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

giả sử /x/ + x
TH1: x>0 => /x/+x=x+x=2x
TH2: x< hoặc =0 => /x/+x=0
=> /x/+x chẵn
=> /n-2016/ + n-2016 chẵn
=> 2^m +2015 chẵn
Mà 2015 lẻ => 2^m lẻ => m=0
thay vào .............
n=3024
m=0
học tốt
2m + 2015 = |n - 2016| + n - 2016
=> Ta có 2 trường hợp:
+/ 2m + 2015 = (n - 2016) + n - 2016
=> 2m + 2015 = n - 2016 + n - 2016
=> 2m + 2015 = 2n - 4032 (1)
Ta có 2n là số chẵn, -4032 cũng là số chẵn (2)
Từ (1) và (2) => 2m + 2015 là số chẵn
Mà 2015 là số lẻ nên 2m là số lẻ => m = 0
Thay m = 0 vào biểu thức 2m + 2015 = 2n - 4032, ta có:
20 + 2015 = 2n - 4032
=> 1 + 2015 = 2n - 4032
=> 1 + 2015 + 4032 = 2n
=> 6048 = 2n
=> 3024 = n hay n = 3024
+/ 2m + 2015 = -(n - 2016) + n - 2016
=> 2m + 2015 = -n + 2016 + n - 2016
=> 2m + 2015 = 0
=> 2m = -2015
⇒2m∉∅⇒m∉∅

\(2^{m}-3\cdot2^{n}=640\)
\(2^{m}-3\cdot2^{n}=2^{n}\cdot(2^{m-n}-3)\)
\(2^{n}\cdot(2^{m-n}-3)=640\)
\(2^{n}\cdot(2^{m-n}-3)=2^7.5\)
⇒ \(\left(\right. 2^{m - n} - 3 \left.\right)\) phải là số lẻ chia hết cho 5
nếu \(2^{m - n} - 3 = 5\) thì \(2^{m-n}=8\) ⇒ \(m−n=3\)
khi đó: \(2^{n}\cdot5=2^7\cdot5\implies2^{n}=2^7\implies n=7\)
\(\Rightarrow𝑚=𝑛+3=7+3=10\)
vậy \(m=10;n=7\) \(\)

\(\frac{1}{27}=3^{\frac{1}{81}}\)
=> \(n=\frac{1}{81}\)
\(\frac{16}{2^n}=\frac{1}{2}=\frac{16}{32}=\frac{16}{2^5}\)
=> n = 5
32 < 2n < 128
=> 25 < 2n < 27
=> 2n = 26
=> n = 6


Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

\(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)
\(\Rightarrow p^2⋮m-1\).Mà p là số nguyên tố nên \(p⋮m-1\)
\(\Rightarrow\orbr{\begin{cases}m-1=1\\m-1=p\end{cases}}\)
Nếu \(m-1=p\)thì \(m+n=m-1\Leftrightarrow n=-1\)(Vô lí vì \(n\inℕ\))
Vậy m - 1 = 1\(\Rightarrow m=2\)
Lúc đó: \(p^2=m+n=2+m\left(đpcm\right)\)
\(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\left(m+n\right)\Rightarrow p^2⋮\left(m-1\right)\)
mà p nguyên tố suy ra m-1\(\in\left\{1;p\right\}\)
Với m-1 = 1 suy ra m = 2 suy ra p2 = 1. (2+n) = n+2
Với m-1=p suy ra p2=p. ( m+n) suy ra p = m + n suy ra n = -1 ( loại)
Vậy p2 = n +2

Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Hui năm định đâu rồi