K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

\(A=\frac{10^{2m}-1}{9};B=\frac{10^{m+1}-1}{9};C=6.\frac{10^m-1}{9}\)

\(A+B+C+8=\frac{10^{2m}-1+10^{m+1}-1+6.\left(10^m-1\right)+72}{9}\)

\(=\frac{10^{2m}+16.10^m+64}{9}=\frac{\left(10^m+8\right)^2}{9}=\left(\frac{10^m+8}{3}\right)^2\)

Do 1 + 0 + 0 +... + 0 + 8 = 9 chia hết cho 3 nên \(\frac{10^m+8}{3}\in Z\)

Vậy A+B+C+8 là số chính phương.

23 tháng 8 2021

\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương

Vậy...

C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)

12 tháng 12 2015

 

a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1

                                                       = 111...11(n).(10n-1)  +6.111..11(n) +1 

                                                      = 333...332(n) +2.333...33(n) +1  = ( 333.....3(n)+1)2   dpcm

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

 

9 tháng 8 2016

Đặt \(A=x^2\) , \(B=y^2\) \(C=z^2\)\(D=t^2\)(x,y,z,t là các số tự nhiên)

Ta có : \(\left(A+B\right)\left(C+D\right)=\left(x^2+y^2\right)\left(z^2+t^2\right)\)

\(=x^2z^2+x^2t^2+y^2z^2+y^2t^2\)

\(=\left(x^2z^2+2xyzt+y^2t^2\right)+\left(x^2t^2-2xyzt+y^2z^2\right)\)

\(=\left(xz+yt\right)^2+\left(xt-yz\right)^2\)

là tổng hai số chính phương . (đpcm)

9 tháng 8 2016

Đặt a,b,c,d:

\(a=x^2\)

\(b=y^2\)

\(c=m^2\)

\(d=n^2\)

\(\Rightarrow\left(a+b\right)\left(c+d\right)=\left(x^2+y^2\right)\left(m^2+n^2\right)\)

\(=\left(xm-yn\right)^2+\left(xn+ym\right)^2\)

=> đpcm

11 tháng 8 2020

a = 11111...111(2n chứ số 1) = \(\frac{10^{2n}-1}{9}\)

b = 22222...222(n chữ số 2) = \(\frac{2\left(10^n-1\right)}{9}\)

a - b = \(\frac{10^{2n}-1}{9}-\frac{2.10^n-2}{9}=\frac{10^{2n}-1-2.10^n+2}{9}\)

\(=\frac{10^{2n}-2.10^n+1}{9}=\frac{\left(10^n-1\right)^2}{3^2}=\left(\frac{10^n-1}{3}\right)^2\)là số chính phương

=> đpcm

11 tháng 8 2020

Ta có :

b = 22222...22222 ( n chữ số 2 ) = 2m

a = 11111...111 ( 2n chữ số 1 ) = 10n . 11111...111 ( n chữ số ) + 11...1111 ( n chữ số )

\(=\left(9m+1\right)m+m=9m^2+2m\) 

Lấy vế a trừ vế b ta được  \(9m^2+2m-2m=9m^2=\left(3a\right)^2\) là SCP 

=> Đpcm