Tìm số tự nhiên x
\(2^x.2^{x+1}.2^{x+2}\)\(< _{_-}\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}...+\dfrac{1}{2^x}\) suy ra 2A= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)
2A-A=2= \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{x-1}}\)-\(1-\dfrac{1}{2}-\dfrac{1}{2^2}...-\dfrac{1}{2^x}\)
A= \(2-\dfrac{1}{2^x}\)
Khi đó: \(\dfrac{1}{1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^x}}=\dfrac{1}{2-\dfrac{1}{2^x}}=\dfrac{2^x}{127}\) suy ra: 127=\(2^{x+1}-1\)=>127+1=128=\(2^7\)=\(2^{x+1}\)=>x+1=7=>x=6
Vậy x=6
\(\Leftrightarrow5\cdot2^x\cdot\dfrac{1}{8}+3\cdot2^x\cdot\dfrac{1}{4}+2^x\cdot\dfrac{1}{2}=240\)
=>2^x=128
=>x=7
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0