Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = - x2a) Vẽ parabol (P)b) Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).c) Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại MBài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + mCMR: (d) luôn cắt (P) tại 2 điểm phân biệta) Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị...
Đọc tiếp
Bài 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = - x2
a) Vẽ parabol (P)
b) Xác định tọa độ các giao điểm A, B của đường thẳng (d): y = - x – 2 và (P).
c) Tìm tọa độ điểm M trên (P) sao cho tam giác MAB cân tại M
Bài 2 Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
CMR: (d) luôn cắt (P) tại 2 điểm phân biệt
a) Giả sử (P) và (d) cắt nhau tại 2 điểm phân biệt có hoành độ x1; x2. Hãy tìm giá trị nhỏ nhất của biểu thức P = khi m thay đổi
Bài 3. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung
Bài 4. Cho parabol (P): y = x2 và đường thẳng (d): y = x + m
Bài 5. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 1
Tìm m sao cho (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 sao cho
Bài 6. Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx - m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .
1. a, (nếu bạn cần hình vẽ thì ib mình nha)
b, MN =(d) \(\cap\) (P) là nghiệm của hệ
\(\left\{{}\begin{matrix}-2x+3=y\\x^2=y\end{matrix}\right.\)
\(\Rightarrow x^2=-2x+3\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) \(\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)
M(1;1) N(-3;9)
\(MN=\sqrt{\left(-3-1\right)^2+\left(9-1\right)^2}\)
\(=\sqrt{4^2+8^2}\)
=\(\sqrt{80}\)
2, a,
(P) và (d)+x nhau khi hệ có nghiệm
\(\left\{{}\begin{matrix}y=x^2\\y=-2x+m\end{matrix}\right.\)
\(\Leftrightarrow x^2=-2x+m\)(*)có nghiệm
\(\Leftrightarrow x^2+2x-m=0\)có nghiệm
\(\Leftrightarrow\Delta`\ge0\Leftrightarrow1-1.\left(-m\right)\ge0\)
\(\Leftrightarrow1+m\ge0\)
\(\Leftrightarrow m\ge-1\)
b, (d) và (P) cắt nhau tại 2 điểm phân biệt
\(\Leftrightarrow\)phương trình (*) có \(\Delta`\ge0\):
\(\Leftrightarrow1+m>0\)
\(\Rightarrow\)m>-1
-Chúc bạn học tốt-