K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

aBy - Chữ Hy Lạp

123 - Chữ số 

ABC - Chữ cái

18 tháng 2 2018

aBY - Chữ Hi Lạp 

123 -  Chữ số 

ABC - CHữ cái 

7 tháng 7 2019

Đáp án D

22 tháng 2 2017

\(VT=a+b+c=\alpha.\frac{a}{\alpha}+\beta.\frac{b}{\beta}+\gamma.\frac{c}{\gamma}\)

Áp dụng phương pháp nhóm ABEL

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\alpha}+\frac{b}{\beta}\ge2\sqrt{\frac{ab}{\alpha\beta}}\left(1\right)\\\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\left(3\right)\end{matrix}\right.\)

Ta có \(ab\ge\alpha\beta\Rightarrow\frac{ab}{\alpha\beta}\ge1\) \(\Rightarrow2\sqrt{\frac{ab}{\alpha\beta}}\ge2\left(2\right)\)

Ta có \(abc\ge\alpha\beta\gamma\Rightarrow\frac{abc}{\alpha\beta\gamma}\ge1\Rightarrow3\sqrt[3]{\frac{abc}{\alpha\beta\gamma}}\ge3\left(4\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}\ge2\)

\(\Rightarrow\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)\ge2\left(\beta-\gamma\right)\) ( 5 )

Từ ( 3 ) và ( 4 )

\(\Rightarrow\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\ge3\)

\(\Rightarrow\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge3\gamma\) ( 6 )

Theo đề bài ta có \(a\ge\alpha\Rightarrow\frac{a}{\alpha}\ge1\)\(\Rightarrow\left(\alpha-\beta\right)\frac{a}{\alpha}\ge\alpha-\beta\) ( 7 )

Từ ( 5 ) , ( 6 ) , ( 7 ) cộng theo từng vế

\(\Rightarrow VT=\left(\alpha-\beta\right)\frac{a}{\alpha}+\left(\beta-\gamma\right)\left(\frac{a}{\alpha}+\frac{b}{\beta}\right)+\gamma\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\ge2\left(\beta-\gamma\right)+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge2\beta-2\gamma+3\gamma+\alpha-\beta\)

\(\Rightarrow VT\ge\alpha+\beta+\gamma\)

\(\Leftrightarrow a+b+c\ge\alpha+\beta+\gamma\) ( đpcm )

24 tháng 5 2017

Theo giả thiết ta có 3 góc: \(\alpha;\beta=\alpha+\dfrac{\pi}{3};\gamma=\alpha+\dfrac{2\pi}{3}\).
Ta có:
\(tan\alpha.tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{\pi}{3}\right).tan\left(\alpha+\dfrac{2\pi}{3}\right)+\)\(tan\left(\alpha+\dfrac{2\pi}{3}\right).tan\alpha\)
\(=tan\alpha\left[tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{2\pi}{3}\right)\right]\)\(+tan\left(a+\dfrac{\pi}{3}\right)tan\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=tan\alpha\dfrac{sin\left(2\alpha+\pi\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{sin\left(\alpha+\dfrac{\pi}{3}\right)sin\left(\alpha+\dfrac{2\pi}{3}\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=tan\alpha\dfrac{-sin2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{cos\dfrac{\pi}{3}-cos\left(2\alpha+\pi\right)}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{-2sin^2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{\dfrac{1}{2}+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4sin^2\alpha+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4\left(1-cos^2\alpha\right)+2cos^2\alpha-1}{cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)}\)
\(=\dfrac{6cos^2\alpha-\dfrac{9}{2}}{\dfrac{1}{2}-cos2\alpha}\)
\(=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{1}{2}-\left(2cos^2\alpha-1\right)}=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{3}{2}-2cos^2\alpha}=-3\).

24 tháng 5 2017

\(4cos\alpha.cos\beta cos\gamma=4cos\alpha cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(\dfrac{1}{2}-cos2\alpha\right)\)
\(=cos\alpha-2cos\alpha.cos2\alpha\)
\(=cos\alpha-\left(cos\alpha+cos3\alpha\right)\)
\(=-cos3\alpha\)
\(=cos\left(\pi+3\alpha\right)\)
\(=cos3\left(\dfrac{\pi}{3}+\alpha\right)\)
\(=cos3\beta\) (đpcm).

19 tháng 2 2018

tim max duoc thoi nhe ban

8 tháng 5 2018

Cứ tìm đi

Okɑy

31 tháng 3 2017

a) Đúng, vì nếu gọi m là đường thẳng vuông góc với β và n là đường thẳng vuông góc với hai mặt phẳng song song α, γ thì góc (m, n) = (β, α) = (β, γ), mà β ⊥ α nên β ⊥ γ.

b) Sai, vì hai mặt phẳng (β), (γ) cùng vuông góc với mp(α) có thể song song hoặc cắt nhau.

NV
4 tháng 8 2021

\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)

\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)

\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)

\(=0\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Lý giải xíu chỗ $3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)$ cho bạn nào chưa rõ:

Áp dụng BĐT AM-GM:

$(a^2+b^2+c^2)(a+b+c)=(a^3+ac^2)+(b^3+a^2b)+(c^3+b^2c)+(ab^2+bc^2+ca^2)$

$\geq 2a^2c+2ab^2+2bc^2+(ab^2+bc^2+ca^2)=3(ab^2+bc^2+ca^2)$