K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!

^_^

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có

28 tháng 7 2018

Ta có: a/(a+b) > a/(a+b+c) 

b/(b+c) > b/(b+c+a) 

c/(c+a) > c/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1

Lại có: a/(a+b) < (a+b)/(a+b+c) 

b/(b+c) < (b+c)/(b+c+a) 

c/(c+a) < (c+a)/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2 

Vậy .....

17 tháng 5 2020

=))hihihi

5 tháng 7 2018

Điều kiện x ≠ 1 và x  ≠  - 1

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Biểu thức dương khi x 2 + 2 x + 3 > 0

Ta có:  x 2 + 2 x + 3  =  x 2 + 2 x + 1 + 2  = x + 1 2 + 2 > 0 với mọi giá trị của x.

Vậy giá trị của biểu thức dương với mọi giá trị x  ≠  1 và x  ≠  - 1

10 tháng 7 2018

Điều kiện x  ≠  0 và x  ≠  -3

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x 2 - 4 x + 5 = x 2 - 4 x + 4 + 1 = x - 2 2 + 1 > 0 với mọi giá trị của x nên

- x 2 + 4 x - 5 = - x - 2 2 + 1 < 0 với mọi giá trị của x.

Vậy giá trị biểu thức luôn luôn âm với mọi giá trị x  ≠  0 và x ≠ -3

23 tháng 6 2016

\(VT=\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}\ge\frac{2\sqrt{bc}}{a}.\frac{2\sqrt{ac}}{b}.\frac{2\sqrt{ab}}{c}=8\)