câu nx nè:
3/1.3 + 3/3.5+3/5.7+....+3/99.101
nhanh tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)
Ủng hộ mk nha !!! ^_^
\(\frac{3}{1.3}\)+ \(\frac{3}{3.5}\)+ \(\frac{3}{5.7}\)+...+ \(\frac{3}{49.51}\)
= \(\frac{3}{2}\)( \(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+...+ \(\frac{2}{49.51}\))
= \(\frac{3}{2}\)( \(\frac{1}{1}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+...+ \(\frac{1}{49}\)- \(\frac{1}{51}\))
= \(\frac{3}{2}\)( 1- \(\frac{1}{51}\))
= \(\frac{3}{2}\). \(\frac{50}{51}\)
= \(\frac{25}{17}\).
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +....... + 1/97 - 1/99
= 1- 1/99
= 98/99
3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51
= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )
= 3 x ( 1 - 1/51 )
= 3 x 50/51
= 150/151
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
Câu 2:
\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Câu 3:
\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)
\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)
Câu 5:
\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)
\(=\frac{25}{17}\)
Gấp lắm hả :V
\(A=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{2001\cdot2003}\)
\(=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2001}-\frac{1}{2003}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2003}\right)=\frac{6006}{4006}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{99.101}\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{2}.\frac{100}{101}\)
\(=\frac{150}{101}\)
Đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}\right)\)
\(\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{1}{2}A=1-\frac{1}{101}\)
\(\frac{1}{2}A=\frac{100}{101}\)
\(A=\frac{100}{101}:\frac{1}{2}\)
\(A=\frac{200}{101}\)