Cho D = \(1/51+1/52+...+1/150\)
CMR : 5/6<D<3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 151+152+...+175>175+175+...+175=2575=13
176+177+...+1100>1100+1100+...+1100=25100=14
=> S>13+14=712 (1)
Ta có: 151+152+...+175<150+150+...+150=2550=12
176+177+...+1100<175+175+...+175=2575=13
=> S<12+13=56 (2)
Từ (1) và (2) => 712 < S<56 ( đpcm )
Ta có:
- 1/51 > 1/75, 1/52 > 1/75 ...
=> 1/51 + 1/52 + ... + 1/75 > 1/75 + ... 1/75 = 25/75 = 1/3
- 1/76 > 1/100, 1/77 > 1/100 ...
=> 1/76 + 1/77 + ... + 1/100 > 1/100 + ... + 1/100 = 25/100 = 1/4
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) > 1/3 + 1/3 = 7/12 (1)
- 1/51 < 1/50, 1/52 < 1/50 ...
=> 1/51 + 1/52 + ... + 1/75 < 1/50 + ... 1/50 = 25/50 = 1/2
- 1/76 < 1/75, 1/77 < 1/75...
=> 1/76 + 1/77 + ... + 1/100 < 1/75 + ... + 1/75 = 25/75 = 1/3
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) < 1/2 + 1/3 = 5/6 (2)
từ (1) và (2) => 5/6 > S > 7/12
* Chúc bn học tốt !!!
Đặt \(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
Do đó: \(A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)(1)
Ta có: \(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
Do đó: \(A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(2)
Từ (1) và (2) ta suy ra ĐPCM
1/50+1/51+1/52+...+1/99<5/6<1/50.25+1/75.25=1/2+1/3=5/6(đpcm)