K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

\(A=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(A=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(A=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)

11 tháng 2 2018

Cảm ơn ạ

4 tháng 7 2018

\(x^2=\left(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\right)^2\)

\(x^2=21+6\sqrt{6}+21-6\sqrt{6}-2\sqrt{441-216}\)

\(x^2=42-2\sqrt{225}\)

\(x^2=42-30=12\)

\(x=2\sqrt{3}\)

nếu có sai bn thông cảm nha

4 tháng 7 2018

cách khác nhé:

\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{21+2.3\sqrt{2}.\sqrt{3}}-\sqrt{21-2.3\sqrt{2}.\sqrt{3}}\)

\(=\sqrt{18+2.\sqrt{18}.\sqrt{3}+3}-\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{18}+\sqrt{3}\right)-\left(\sqrt{18}-\sqrt{3}\right)\)

\(=2\sqrt{3}\)

p/s: mk đã phân tích kĩ ra cho bn rồi đó

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

25 tháng 12 2018

bạn làm bài nào thế ?

25 tháng 7 2018

\(a.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.\sqrt{18}.\sqrt{3}+3}+\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}+\sqrt{18}-\sqrt{3}=2\sqrt{18}=6\sqrt{2}\)

1 tháng 8 2018

\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)

\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)

\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)

\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

1 tháng 8 2018

a)

=\(\sqrt{18-2.3\sqrt{2}.1+1}\)

\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)

\(=3\sqrt{2}-1\)

b)

=\(\sqrt{12+2.2\sqrt{3}.3+9}\)

=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)

=\(2\sqrt{3}+3\)

c)

=\(\sqrt{25-2.5.4\sqrt{2}+32}\)

=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)

=\(4\sqrt{2}-5\)

d)

\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)

e)

\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)

g)

\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

1 tháng 8 2017

câu a) \(\sqrt{5+2\sqrt{6}}+\sqrt{14-4\sqrt{6}}\)

26 tháng 5 2018

GG

8 tháng 7 2018

\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}\)

\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+2.3\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2.3\sqrt{5}+5}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{3+2.\sqrt{3}.3\sqrt{2}+18}=\sqrt{\left(\sqrt{3}+3\sqrt{2}\right)^2}=\sqrt{3}+3\sqrt{2}\)

\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}\)

Nên \(E=\frac{\sqrt{5}+1+3+\sqrt{5}}{\sqrt{2}}.\left(3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\right)\)

\(=\frac{4+2\sqrt{5}}{\sqrt{2}}.2.3.\sqrt{2}=24+12\sqrt{5}\)

28 tháng 7 2020

Cung Bảo Bình rất uy tín

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

Đặt \(\sqrt[3]{27+6\sqrt{21}}=a; \sqrt[3]{27-6\sqrt{21}}=b\) thì ta cần tính tổng $A=a+b$.

Ta có:

$a^3+b^3=54$

\(ab=\sqrt[3]{(27+6\sqrt{21})(27-6\sqrt{21})}=-3\)

$A^3=(a+b)^3=a^3+b^3=3ab(a+b)=54+3(-3)A$

$\Leftrightarrow A^3=54-9A$

$\Leftrightarrow A^3+9A-54=0$

$\Leftrightarrow A^2(A-3)+3A(A-3)+18(A-3)=0$

$\Leftrightarrow (A^2+3A+18)(A-3)=0$

$\Leftrightarrow A-3=0$ (do $A^2+3A+18>0$)

$\Leftrightarrow A=3$

4 tháng 7 2018

Cách khác :

\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\dfrac{\sqrt{36+2.6.\sqrt{6}+6}-\sqrt{36-2.6.\sqrt{6}+6}}{\sqrt{2}}=\dfrac{6+\sqrt{6}-6+\sqrt{6}}{\sqrt{2}}=\dfrac{2\sqrt{6}}{\sqrt{2}}=2\sqrt{3}\)

4 tháng 7 2018

Đặt: \(A=\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)

\(A^2=21+6\sqrt{6}-2\sqrt{\left(21+6\sqrt{6}\right)\left(21-6\sqrt{6}\right)}+21-6\sqrt{6}\)

\(A^2=42-2\sqrt{441-216}\)

\(A^2=42-2\sqrt{225}\)

\(A^2=42-30=12\)

\(\Rightarrow A=\sqrt{12}=2\sqrt{3}\)