Tìm x thuộc Z biết : \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
a) \(\left[\frac{2-x}{5}\right]=7\Rightarrow7\le\frac{2-x}{5}< 8\Rightarrow35\le2-x< 40\Rightarrow-35\ge x-2>-40\Rightarrow-33\ge x>-38\)
\(\Rightarrow x\in\left\{-33;-34;-35;-36;-37\right\}\)
b) Vì \(x\in Z\)nên [2x] = 2x ; [3x] = 3x. Vậy : \(2x+3x=5\Leftrightarrow5x=5\Leftrightarrow x=1\)
c) Xét :
\(x\ge6\Rightarrow\hept{\begin{cases}\frac{x}{2}\ge3\\\frac{x}{3}\ge2\end{cases}\Rightarrow\hept{\begin{cases}\left[\frac{x}{2}\right]\ge3\\\left[\frac{x}{3}\right]\ge2\end{cases}\Rightarrow}\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\ge5}\)
\(x\le5\Rightarrow\hept{\begin{cases}\frac{x}{2}\le2,5\\\frac{x}{3}\le1,\left(6\right)\end{cases}\Rightarrow\hept{\begin{cases}\left[\frac{x}{2}\right]\le2\\\left[\frac{x}{3}\right]\le1\end{cases}\Rightarrow}\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\le3}\)
Vậy giá trị của \(\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]\)không thể nằm giữa 3 và 5 nên không có giá trị x thỏa mãn pt
d) Xét :
\(x< 0\Rightarrow\frac{5}{x},\frac{6}{x}< 0\Rightarrow\left[\frac{5}{x}\right],\left[\frac{6}{x}\right]< 0\Rightarrow\left[\frac{5}{x}\right]+\left[\frac{6}{x}\right]< 0\)(vô lí)
\(x\ge2\Rightarrow\hept{\begin{cases}\frac{5}{x}\le2,5\\\frac{6}{x}\le3\end{cases}}\Rightarrow\hept{\begin{cases}\left[\frac{5}{x}\right]\le2\\\left[\frac{6}{x}\right]\le3\end{cases}\Rightarrow\left[\frac{5}{x}\right]+\left[\frac{6}{x}\right]\le5}\)(vô lí)
Vậy x = 1
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
ĐKCĐ: \(x\ge0;x\ne9,x\ne4\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\\ \)
\(=\left(\frac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}-1\right):\left(\frac{\left(3-\sqrt{x}\right).\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x+3}\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=-\frac{3}{\sqrt{x}+3}:\left(-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)=-\frac{3}{\sqrt{x}+3}:\frac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}=\frac{3}{\sqrt{x}-2}\)
b, \(A\inℤ\Leftrightarrow\frac{3}{\sqrt{x}-2}\inℤ\)
Nếu x không là số chính phương thì \(\sqrt{x}\)là số vô tỉ thì \(\sqrt{x}-2\)là số vô tỉ\(\Rightarrow A=\frac{3}{\sqrt{x}-2}\)là số vô tỉ
Nếu x là số chính phương thì \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}-2\inℤ\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\Rightarrow\sqrt{x}-2\in\left\{\pm1;\pm3\right\}\Rightarrow\sqrt{x}\in\left\{1;3;5\right\}\)\(\Rightarrow x\in\left\{1;9;25\right\}\)
Mà theo ĐKXĐ có x khác 9 => \(x\in\left\{1,25\right\}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x-x=-\frac{2}{3}\)
\(x=\frac{-2}{3}+\frac{5}{6}\)
\(x=\frac{-4}{6}+\frac{5}{6}\)
\(x=\frac{1}{6}\)
\(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)
\(x-\frac{5}{6}+x=x-\frac{2}{3}\)
\(\Rightarrow x+x-\frac{5}{6}=x-\frac{2}{3}\Rightarrow x+x-x=-\frac{2}{3}+\frac{5}{6}\)
\(\Rightarrow x=\frac{1}{6}\Rightarrow\)x ko tồn tại