K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Do p là số nguyên tố nên p là số tự nhiên.

Xét p = 3k + 1=> p2 + 8 = ( 3k + 1 )2 + 8 = 9k2 + 6k + 9 \(⋮\) 3 ( là hợp số )

Xét p = 3k + 2 => p2 + 8 = ( 3k + 2 )+ 8 = 9k2 + 12k + 12 \(⋮\) 3 ( là hợp số )

Xét p = 3k => k = 1 do p là số nguyên tố => p2 + 8 = 9 + 8 = 17 ( thỏa mãn )

Ta có : p+ 2 = 11. Mà 11 là số nguyên tố => Điều cần chứng minh

10 tháng 2 2018

Bài này cũng giống như bài tìm p nguyên tố sao cho p2+8 là số nguyên tố thôi

Cách làm cũng giống luôn

Xét p=2

... loại

Xétp=3

... thỏa mãn

Xét p> 3 thì dùng đồng dư

Ta có: \(p\equiv\pm1\left(mod3\right)\)

\(\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2+8\equiv9\left(mod3\right)\)

\(\Rightarrow p^2+8⋮3\)

Mà \(p^2+8>3\)

Nên là hợp số ( loại)

7 tháng 4 2018

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.

15 tháng 2 2022

\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
2y+1-3-131
x0-224
y-2-110

Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)

 

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

20 tháng 4 2015

 

Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.

Hoặc:

p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)

Vậy (p1+p2)/2 là hợp số

26 tháng 7 2017

ta có :

số chia hết  cho 2 phải là số chẵn

số nào chia cho 2 cũng có thương là số chẵn ( khác 2 ) 

=> (P1 + P2 ) : 2 = SỐ CHĂN CHIA HẾT 2 => SỐ ĐÓ CÓ TRÊN 2 ƯỚC

=> ĐPCM

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.