K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

xy+x+y = 3 

<=> (xy+x)+(y+1) = 4

<=> (y+1).(x+1) = 4

Tương tự : (y+1).(z+1) = 9 ; (z+1).(x+1) = 16

=> 4.9.16 = [(x+1).(y+1).(z+1)]^2

<=> [(x+1).(y+1).(z+1)]^2 = 576

<=> (x+1).(y+1).(z+1) = -24 hoặc (x+1).(y+1).(z+1) = 24

<=> x+1 = -8/3 ; y+1 = -3/2 ; z+1 = -6 hoặc x+1 = 8/3 ; y+1 = 3/2 ; z+1 = 6

<=> x=-11/3 ; y=-5/2 ; z=-7 hoặc x=5/3 ; y=1/2 ; z=5

<=> x+y+z = -79/6 hoặc x+y+z = 43/6

Vậy ................

P/S : Tham khảo nha

10 tháng 6 2017

\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)

Từ (1) , (2) và (3):

\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)

Do x,y,z dương =>(x+1)(y+1)(z+1)=24

từ (1)=>z+1=24:4=6=>z=5

từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)

từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)

\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

20 tháng 3 2018

tự tinh mới học giỏi được nếu làm không được thì hỏi mẹ và thầy giáo chỉ dẫn 

14 tháng 7 2019

Ta có:

\(xy+x+y=1\)

\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=2\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=2\)

Tương tự,ta được:

\(\left(y+1\right)\left(z+1\right)=4\)

\(\left(z+1\right)\left(x+1\right)=8\)

Đặt \(\left(x+1;y+1;z+1\right)\rightarrow\left(a;b;c\right)\)

Ta có:

\(ab=2;bc=4;ca=8\)

\(\Rightarrow\left(abc\right)^2=64\Rightarrow abc=8;abc=-8\)

Mà 

\(ab=2\Rightarrow c=4;c=-4\Rightarrow z=3;z=-5\)

\(bc=4\Rightarrow a=2;a=-2\Rightarrow x=1;x=-3\)

\(ca=8\Rightarrow b=1;b=-1\Rightarrow y=0;y=-2\)

Vậy...

10 tháng 7 2016

cặp nghiệm nk ( 2;3;4) và (0;-1;-2)

10 tháng 7 2016

\(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\xz=z+x+2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=2\left(1\right)\\\left(y-1\right)\left(z-1\right)=6\left(2\right)\\\left(x-1\right)\left(z-1\right)=3\left(3\right)\end{cases}}\)

Nhân (1) , (2) , (3) theo vế được : \(\left[\left(x-1\right)\left(y-1\right)\left(z-1\right)\right]^2=36\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(y-1\right)\left(z-1\right)=6\\\left(x-1\right)\left(y-1\right)\left(z-1\right)=-6\end{cases}}\)

  • Nếu (x-1)(y-1)(z-1) = 6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
  • Nếu (x-1)(y-1)(z-1) = -6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=0\\y=-1\\z=-2\end{cases}}\)
10 tháng 12 2016

Hệ đã cho tương đương với : 

\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)

Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P