Tìm x, Biết:
|x| + 1/2 = 3/4
Giải giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)
=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)
b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)
=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)
=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)
a) Thay x = 81 vào A ta có:
\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)
b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)
\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
c) \(\dfrac{A}{B}< 4\) khi
\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\sqrt{x}-5< 0\)
\(\Leftrightarrow x< 25\)
Kết hợp với đk:
\(0\le x< 5\)
\(\left(\dfrac{1}{3}-\dfrac{3}{2}.x\right)^2=\dfrac{9}{4}\)
\(\left(\dfrac{1}{3}-\dfrac{3}{2}.x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(\dfrac{1}{3}-\dfrac{3}{2}.x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>\dfrac{1}{3}-\dfrac{3}{2}x=\dfrac{3}{2}\) hoặc \(\dfrac{1}{3}-\dfrac{3}{2}x=\dfrac{-3}{2}\)
\(\dfrac{3}{2}x=\dfrac{3}{2}+\dfrac{1}{3}\) hoặc \(\dfrac{3}{2}x=\dfrac{-3}{2}+\dfrac{1}{3}\)
\(\dfrac{3}{2}x=\dfrac{9}{6}+\dfrac{2}{6}\) hoặc \(\dfrac{3}{2}x=-\dfrac{9}{6}+\dfrac{2}{6}\)
\(\dfrac{3}{2}x=\dfrac{11}{6}\) hoặc \(\dfrac{3}{2}x=\dfrac{-7}{6}\)
\(x=\dfrac{11}{6}:\dfrac{3}{2}=\dfrac{11}{6}.\dfrac{2}{3}\) hoặc \(x=\dfrac{-7}{6}:\dfrac{3}{2}=\dfrac{-7}{6}.\dfrac{2}{3}\)
\(x=\dfrac{11}{9}\) hoặc \(x=-\dfrac{7}{9}\)
Vậy...
Dạ em cảm ơn , như vậy em đã biết cách làm ạ , em muốn góp ý như sau : dòng 4 phải sửa lại thành 3/2x = 1/3 - 3/2 hoặc 3/2x = 1/3 - -3/2 .em nghỉ như vậy sẽ đúng hơn
\(x^2-2mx+m^2-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow2m^2-2\left(m^2-1\right)-4=0\)
\(\Leftrightarrow2m^2-2m^2+2-4=0\)
\(\Leftrightarrow-2=0\left(VL\right)\)
Vậy không có giá trị m để thỏa mãn đề bài.
a,=0,9:(4/5.1,25+1:1/3)
=0,9:(1+3)
=0,9:4
=0,225
b,=9,6:6-0,6
=1,6-0,6
=1
c,=7/2.11/4-7/2.5/4
=7/2.(11/4-5/4)
=7/2.3/2
=21/4
Lời giải:
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x+1}=a; \sqrt{x-1}=b$ (ĐK: $a,b\geq 0$)
PT đã cho trở thành:
$\frac{a^2+b^2}{2}+ab=a+b+4$
$\Leftrightarrow a^2+b^2+2ab=2(a+b)+8$
$\Leftrightarrow (a+b)^2-2(a+b)-8=0$
$\Leftrightarrow (a+b-4)(a+b+2)=0$
Với $a\geq 0; b\geq 0$ thì $a+b+2\geq 2>0$
$\Rightarrow a+b-4=0$
$\Leftrightarrow a+b=4$
$\Leftrightarrow \sqrt{x+1}+\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x+1}=4-\sqrt{x-1}$
$\Rightarrow x+1=15+x-8\sqrt{x-1}$ (bp 2 vế)
$\Leftrightarrow 14=8\sqrt{x-1}$
$\Leftrightarrow x-1=(\frac{7}{4})^2=\frac{49}{16}$
$\Leftrightarrow x=\frac{65}{16}$ (tm)
ĐKXĐ: \(x\ge4\)
\(\sqrt{x^2-16}-3\sqrt{x-4}=0\\ \Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}-3\sqrt{x-4}=0\\ \Leftrightarrow\sqrt{x-4}\left(\sqrt{x+4}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+4}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{x+4}{\sqrt{x}}\)
b: Để A=5 thì \(x+4=5\sqrt{x}\)
\(\Leftrightarrow x=16\)
a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)
b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16
c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)
\(\left|x\right|+\frac{1}{2}=\frac{3}{4}\)
\(\left|x\right|=\frac{3}{4}-\frac{1}{2}\)
\(\left|x\right|=\frac{1}{4}\)
\(x=-\frac{1}{4};\frac{1}{4}\)
Cảm ơn bạn nha! Nhưng làm thế chưa rõ.