Tính và Quy Đồng : \(\frac{4^2.5.11}{44.20};\frac{13.15.6}{18.65.7};\frac{7.2.8.5^2}{14.2.5}va\frac{2^3.3^2.5}{3.2^3.5^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(4^2. 5.11)/(44.20)`
`=(4.11.4.5)/(4.11.4.5)`
`=1`
`(13.15.16)/(18.65.7)`
`=(13.15.16)/(2.3.3.13.5.7)`
`=8/21`
`(7.2.8.5^2)/(14.2.5)`
`=(14.2.4.5.5)/(14.2.5)`
`=4.5`
`=20`
`(2^3. 3^3. 5)/(3.2^3. 5^3)`
`=(2^3. 3.5.3^2)/(2^3. 3.5.5^2)`
`=(3^2)/(5^2)`
`=9/25`
**Quy đồng:
`(4^2. 5.11)/(44.20)=1=525/525`
`(13.15.16)/(18.65.7)=8/21=200/525`
`(7.2.8.5^2)/(14.2.5)=20=840/525`
`(2^3. 3^3. 5)/(3.2^3. 5^3)=9/25=189/525`
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
1. a) Ta có BCNN(12, 15) = 60 nên ta lấy mẫu chung của hai phân số là 60.
Thừa số phụ:
60:12 =5; 60:15=4
Ta được:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\)
\(\frac{7}{{15}} = \frac{{7.4}}{{15.4}} = \frac{{28}}{{60}}\)
b) Ta có BCNN(7, 9, 12) = 252 nên ta lấy mẫu chung của ba phân số là 252.
Thừa số phụ:
252:7 = 36; 252:9 = 28; 252:12 = 21
Ta được:
\(\frac{2}{7} = \frac{{2.36}}{{7.36}} = \frac{{72}}{{252}}\)
\(\frac{4}{9} = \frac{{4.28}}{{9.28}} = \frac{{112}}{{252}}\)
\(\frac{7}{{12}} = \frac{{7.21}}{{12.21}} = \frac{{147}}{{252}}\)
2. a) Ta có BCNN(8, 24) = 24 nên:
\(\frac{3}{8} + \frac{5}{{24}} = \frac{{3.3}}{{8.3}} + \frac{5}{{24}} = \frac{9}{{24}} + \frac{5}{{24}} = \frac{{14}}{{24}} = \frac{7}{{12}}\)
b) Ta có BCNN(12, 16) = 48 nên:
\(\frac{7}{{16}} - \frac{5}{{12}} = \frac{{7.3}}{{16.3}} - \frac{{5.4}}{{12.4}} = \frac{{21}}{{48}} - \frac{{20}}{{48}} = \frac{1}{{48}}\).
Bài 2:
\(E=\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{97.99}\)
\(\Rightarrow E=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(\Rightarrow E=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow E=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\frac{32}{99}\)
\(\Rightarrow E=\frac{64}{99}\)
Vậy \(E=\frac{64}{99}\)
a) \(\frac{4}{9}\)và \(\frac{7}{15}\)
Ta có: \(9 = 3^2 ; 15 = 3.5\) nên \(BCNN (9,15) = 3^2. 5 = 45\). Do đó ta có thể chọn mẫu chung là 45.
\(\frac{4}{9}=\frac{4.5}{9.5}=\frac{20}{45}\)
\(\frac{7}{15}=\frac{7.3}{15.3}=\frac{21}{45}\)
b) \(\frac{5}{12}; \frac{7}{15}\) và \(\frac{4}{27}\)
Ta có: \(12=2^2.3\); \(15 = 3.5\) ; \(27=3^3\) nên BCNN(12, 15, 27) =\(2^2.3^3.5=540\). Do đó ta có thể chọn mẫu chung là 540.
\(\frac{5}{12}=\frac{5.45}{12.45}=\frac{225}{540}\)
\(\frac{7}{15}=\frac{7.36}{15.36}=\frac{252}{540}\)
\(\frac{4}{27}=\frac{4.20}{27.20}=\frac{80}{540}\)
\(\frac{4^2.5.11}{44.20}=\frac{2^4.5.11}{2^2.11.2^2.5}=\frac{2^4.5.11}{2^4.5.11}=1\)
\(\frac{13.15.6}{18.65.7}=\frac{13.3.5.2.3}{2.3^2.13.5.7}=\frac{3^2.2.5.13}{2.3^2.13.5.7}=\frac{1}{7}\)