1. Số nghiệm của hệ phương trình \(\hept{\begin{cases}x^3+2xy^2+12=0\\x^28y^2=12\end{cases}}\)
2. Giá trị nghuyên nhỏ nhất của m để phương trình \(x^3+mx=0\)có 3 nghiệm riêng biệt.
3. Tìm m để phương trình \(x^4-2x^2+3-1=0\)có 4 nghiệm mà điểm biễu diễn của chúng trên trục hoành cách đều nhau.
4. Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
Tìm giá trị nguyên âm của m để hệ phương trình trên có nghiệm (x;y) nguyên
4.
(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1
<=> x-m2x=-2m2+m+1
<=> x(1-m)(1+m)=-(m-1)(1+2m)
với m=-1 thì pt vô nghiệm
với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn
với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)
=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)
để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)
=> m+1\(\in\)Ư(1)={1;-1}
=> m\(\in\){0;-2} mà m nguyên âm nên m=-2
vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề
Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi