K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)

\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)

\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)

\(\Rightarrow M=1-\frac{1}{2016^2}\)<1

=>(DPCM)

CÂU b và c làm tương tự

29 tháng 3 2016

chtt 

nhé bn

Ta có: S1 = 2-4+6-8+...+1998-2000

= (2-4)+(6-8)+...+(1998-2000)

= -2 + (-2) + ......+ (-2)

= -2000

S2 =2-4-6+8+10-12-14+16+...+1994-1996-1998+2000

=( 2 - 4 - 6 + 8) + ( 10 - 12 - 14 + 16) + ................+ (1994 - 1996 - 1998 + 2000)

= 0 + 0 + ......... + 0

= 0

S1 = 1 + (-2) + 3 + (-4) + ... + 2001 + (-2002)

= 1 - 2 + 3 - 4 + ... + 2001 - 2002

= (1 - 2) + (3 - 4) + ... + (2001 - 2002) (Có tất cả số cặp là: [(2002 - 1) : 1 + 1] : 2 = 1001 (cặp))

= (-1) + (-1) +...+ (-1) } 1001 chữ số (-1)

= (-1) . 1001

= (-1001)

S2 = 1 + (-3) + 5 + (-7) +...+ (-1999) + 2001

= 1 - 3 + 5 - 7 + ... - 1999 + 2001

= (1 - 3) + (5 - 7) + ... (1997 - 1999) + 2001 (Có số cặp là: [(1999 - 1):2 + 1] : 2 = 500 (cặp))

= (-2) + (-2) + ... + (-2) + 2001 } 500 số (-2)

= (-2) . 500 + 2001

= -1000 + 2001

= 1001

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

15 tháng 2 2017

Mình nghĩ gần 30 phút mới ra bài này ó; công nhận khó thật!!!

\(C=\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{\left(2n\right)^2}\\ =\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\\ < \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\\ =\frac{1}{4}\left(\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{4}\left(\text{đ}pcm\right)\)

\(D=\frac{2!}{3!}+\frac{2!}{4!}+....+\frac{2!}{n!}\\ =2!\left(\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{n!}\right)\\ < 2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{\left(n-2\right)\left(n-1\right)n}\right)=2\left(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n-1\right)n}\right)\right)\\ =1\left(\frac{1}{2}-\frac{1}{\left(n-1\right)n}\right)< 1\left(\text{đ}pcm\right)\)

Chúc bạn học tốt !!!!!