Cho n thuộc z. Chứng minh : (n-2)(n-1)n(n+1) chia hết cho 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
chứng minh chia hết cho 4vaf 6
sử dụng 1trong ba hàn gđẳng thức bậc một
chác chằn có 2 số chẵn nên chia hết 4
chắc chắn chia hết cả 2 và 3 nên chia hết 6 chắc chắn chia hết 24
Ta thấy 24 = 3.8
Mặt khác ƯCLN(3,8)=1 nên ta cần chứng minh tích trên chia hết cho 3 và 8
*Chứng minh chia hết cho 3
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp
Do đó \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3 (1)
*Chứng minh chia hết cho 8
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp nên sẽ có 2 số chẵn và 2 số lẻ
Ta thấy tích 2 số chẵn liên tiếp luôn chia hết cho 8 nên \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 24