cho a,b,c là các dố thực thõa mãn ab + bc + ca = 4
CMR a4 + b4 + c4 lớn hơn hoặc bằng 16/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b,c>0;abc=1000\)
\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)
P đạt GTLN là 1/1000 khi \(a=b=c=10\)
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$
Áp dụng 2 bđt x^2+y^2+z^2 >= xy+yz+zx và x^2+y^2+z^2 >= (x+y+z)^2/3 thì :
a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 >= (ab+bc+ca)^2/3 = 4^2/3 = 16/3
Dấu "=" xảy ra <=> a=b=c=\(+-\frac{2}{\sqrt{3}}\)
=> ĐPCM
Tk mk nha