Cho (a-b)(b-c)(c-a) = (a+b)(b+c)(c+a) .Chứng minh a^2b + b^2c+ c^2a+ abc=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho (a-b)(b-c)(c-a) = (a+b)(b+c)(c+a) .Chứng minh a^2b + b^2c+ c^2a+ abc=0 - H
Ta có:\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left(a^2c-ac^2+bc^2-b^2c+ab^2-a^2b\right)-\left(2abc+ac^2+a^2c+b^2c+bc^2+a^2b+ab^2\right)=0\)
\(\Leftrightarrow a^2c-ac^2+bc^2-b^2c+ab^2-a^2b-2abc-ac^2-a^2c-b^2c-bc^2-a^2b-ab^2=0\)
\(\Leftrightarrow-2a^2b-2b^2c-2ac^2-2abc=0\)
\(\Leftrightarrow-2\left(a^2b+b^2c+c^2a+abc\right)=0\)
\(\Leftrightarrow a^2b+b^2c+c^2a+abc=0\left(đpcm\right)\)
\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:
\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)
\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)
\(\Rightarrow VT\ge2.2=4\)
\(\RightarrowĐPCM\)
Cho \(a=b=c\)
\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)
\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(\Leftrightarrow2\ge2\) ( Đúng)
\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)
Tương tự và cộng lại;
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)
Tương tự:
\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)
\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)
Cộng vế:
\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
(a-b)(b-c)(c-a) = (a+b)(b+c)(c+a) <=> \(-b^2c-ac^2+bc^2-a^2b+ab^2+a^2c\) = \(2abc+a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\)
<=> 2\(\left(a^2b+b^2c+c^2a+abc\right)=0\)
<=> \(a^2b+b^2c+c^2a+abc=0\)